copley controls Integrated Servo Drive

IPL-060-15

GENERAL SPECIFICATIONS

Advanced Feature Set

- 32-bit floating point filters
- Multiple advanced filters
- Frequency analysis tools

Control Modes

- Profile Position-Velocity-Torque
- Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- Camming, Gearing

Command Interface

- CANopen
- ASCII, Serial Binary, and discrete I/O
- Stepper or Quad A/B position commands
- PWM Velocity-Torque command
- Master encoder (Gearing, Camming)
- ±10 V Position-Velocity-Torque

Communications

- CANopen
- RS-232

Feedback

- Primary Absolute
 BiSS-C Unidirectional
 SSI Absolute or Incremental
- Primary & Secondary Incremental Digital Quad A/B/X
- Digital Halls

I/O

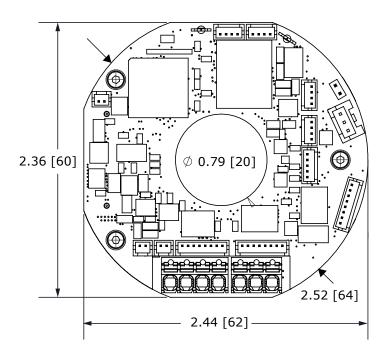
- 2 Digital high-speed input
- 1 Analog motor overtemp input
- 1 Analog motor overtemp PT1000 input
- 1 Analog differential input
- 1 Digital PWM brake output
- 1 Digital general purpose output

Dimensions

 60 x 62 x 22.78 [2.36 x 2.44 x 0.90] mm [in] Center cutout diameter 20 [0.79] mm [in] Outer diameter 64 [2.52] mm [in]

Description

IPL-060-15 is a miniature dual-board servo drive designed for mounting on motors or in robotic joints. A large cutout in the center allows power, network, and other device cables to pass through.



Actual Size

Model	Ic	Ιp	Unit	Vdc
IPL-060-15	7.5	15	Adc	14~60 Vdc

IPL-060-15

GENERAL SPECIFICATIONS

Test conditions: Load = Wye connected MODEL	d load: 1 n	$H + 1\Omega$ line-line. Ambient IPL-060-1	•	25 °C. +HV = HVmax
OUTPUT POWER				
Peak Current		15 (10.6))	Adc (Arms, sinusoidal)
Peak time		1		Sec
Continuous current		7.5 (5.3)		Adc (Arms, sinusoidal)
INPUT POWER				
HVmin to HVmax		+14 to +6		Vdc, transformer-isolated
Ipeak		15 (10.6)		Adc (1 sec) peak (Arms)
Icont		7.5 (5.3)		Adc continuous (Arms)
· · ·	encoder ar	id disabled, 6 W with no en	coder and max	continuous output current
PWMOUTPUTS				
	IOSFET 3-p	hase inverter, 16 kHz cente		VM carrier, space-vector modulation
PWM ripple frequency			32 kHz	
BANDWIDTH				
Current loop, small signal			th will vary wit	h tuning & load inductance
Current loop update rate Current sense resolution		16 kHz (62.5 µs) 12 bits		
Position & Velocity loop update ra	to	4 kHz (250 µs)		
HV Compensation		Changes in HV do not aff	ect bandwidth	
Minimum load inductance		100 µH line-line	oot buildingth	
COMMAND INPUT				
CANopen		Galvanically isolated from	drive circuits	
Signals		CAN_H, CAN_L, CAN_GNI	D, 1 mBit/sec r	naximum
Data protocol		CANopen Device Profile D		
Stand-alone mode				
Digital position reference		Pulse/Direction, CW/CCW		Stepper commands (2 MHz maximum rate)
		Quad A/B Encoder		2 M line/sec, 8 Mcount/sec (after quadrature)
Digital torque & velocity refe	rence	PWM , Polarity PWM 50%		PWM = 0% - 100%, Polarity = 1/0 $PWM = 50% + 50% + polarity cianal required$
		PWM 50% PWM frequency range		PWM = 50% \pm 50%, no polarity signal required 1 kHz minimum, 100 kHz maximum
		PWM minimum pulse widt	-h	220 ns
Indexing				m inputs or ASCII commands.
Camming		Up to 10 CAM tables can		
ASCII		RS-232, 9600~115,200 E		
DIGITAL INPUTS				
Number	2			
IN1, IN2				10 k Ω pull-up to +5 Vdc, maximum input voltage = +12 Vdc
	RC time	-constants assume active d	rive on inputs a	and do not include 10 k Ω pull-ups.
ANALOG INPUTS				
Number	2			
AIN1				+5V, overtemp threshold programmable from CME
AIN2	General	purpose Diffe	rential, ±5 Vdc	c, 5.05 kΩ input impedance, ±10 Vdc range
		Sam	ple-rate 4 kHz,	12 DIts
DIGITAL OUTPUTS	2			
Number	2 MOCEET	anon drain 1 k0 nullun ta	EV functions	a neo geometria
OUT1 OUT2		open drain, 1 k Ω pullup to		+HV, programmable for other functions
0012				oltage, and PWM frequency programmable
	Nuccu V	stage, notang voltage, del	a, to notating v	onage, and i with nequency programmable
SERIAL COMMUNICATION PORT Signals	RVD TV	D, GND, TTL levels		
Mode			ion port for dri	ve setup and control, 9,600~115,200 Baud
Protocol		Binary format		to seeap and control, 5,000.0115,200 Dauu
Isolation		ated. Referenced to Signal	Ground	
CANOPEN PORT				
	Calvari	cally isolated from drive -in-		CAN L CAN CND 1 mBit/coc maximum
Format Protocol		n, CiA 402	Luits. CAN_H, (CAN_L, CAN_GND, 1 mBit/sec maximum
		ternal shunt can be activate	ed with a 0 0 i	umper on P2
DC POWER OUTPUT				
	250 ~ ^	maximum charad by dual	ancodora Drot	acted for overland or charts
+5 Vdc	∠ou mA	maximum, snared by dual	encoders. Prote	ected for overload or shorts
MOTOR CONNECTIONS	Diana	to to be 2 where he ables		delle seconded
Motor U,V,W		tputs to 3-phase brushless		delta connected
		orush motor use outputs U a n inductance: 100 µH line-l		
Encoders		. See FEEDBACK on p. 8	ine	
Halls		see FEEDBACK on p. 8		
Motemp			to disable the	drive if motor sensor voltage is
· · · · · F		or less than a programmed		
INDICATOPS	-			
INDICATORS CANopen	RUN:	Green, shows the state of t	ha CANanan Si	tate Machine
Слифен		Red, shows that an error co		
		Green, shows the state of t		each port
AMP				fault condition. Bicolor LEDs operate independently
				r

IPL-060-15

GENERAL SPECIFICATIONS

EEDBACK			
Absolute encoder:			
BiSS (B&C) Unidirectional SSI	MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder. Clk, /Clk, (X, /X), Data, /Data (A, /A) signals, clock output from drive, data returned from encoder		
Incremental encoder:	Encoder data inputs and clock outputs are differential with internal 121 Ω terminators		
Quadrature A/B/X	A, B, X: single-ended (X Index signal not required) Schmitt trigger, 100 ns RC filter, 5 Vdc compatible, 10 k Ω pull-up to +5 Vdc		
	5 MHz maximum line frequency (20 M counts/sec)		
Digital Halls:			
	U, V, W: Single-ended, 120° electrical phase difference between U-V-W signals Schmitt trigger, 1 μ s RC filter from active HI/LO sources, 24 Vdc compatible, 1.5 k Ω pull-up to +5 Vdc Vt+ = 2.5~3.5 Vdc, VT- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc		
Encoder power	+5 Vdc ±2% @ 250 mAdc max, shared by dual encoders		
ROTECTIONS			
HV Overvoltage	$+HV > +62 \pm 1 Vdc$ Drive outputs turn off until +HV is $< +62 \pm 1 Vdc$		
HV Undervoltage	+HV < +14 \pm 1 Vdc Drive outputs turn off until +HV > +14 Vdc \pm 0.5 Vdc		
Drive over temperature	PC Board > 95 ±3 °C Programmable as latching or temporary fault		
Short circuits	Output to output, output to ground, output to +HV, internal PWM bridge faults		
	Regent to GND, or regent to +HV		
I ² T Current limiting	Programmable: continuous current, peak current, peak time for drive and motor		
Latching / Non-Latching	Programmable response to errors		
Motor Overtemperature	AIN1 has two programmable thresholds. The first one triggers an overtemp warning		
·	and the second one disables the drive. Expected thresholds are 100~200 °C		
Loss of Feedback (BiSS encoders)	The PWM outputs are disabled until the feedback is restored. Selectable as either latching or non-latching		
ECHANICAL & ENVIRONMENTAL			
Size	Shape is round with flats		
	Length & width: 60 x 62 mm (2.36 x 2.44 in)		
	Center hole diameter: 20 mm (0.79 in), outer diameter 64 mm (2.52 in)		
Weight	45q		
Ambient temperature	0 to +70 °C operating, -40 to +85 °C storage in occordance to IEC 60068-2-1 and IEC 60068-2-2		
Humidity	0 to 95% RH, non-condensing per IEC 60068-2-78		
Altitude	\leq 2000 m (6,500 ft) per IEC 60068-2-13		
Vibration	2 <i>q</i> peak, 10~500 Hz (sine) per IEC 60068-2-6		
Shock	10 q, 10 ms, half-sine pulse per IEC 60068-2-27		
Contaminants	Pollution degree 2 per IEC 60664-1		
GENCY STANDARDS CONFORMANCE			
Standards and Directives			
Product Safety			
Directive 2014/35/EU (Low Vo	ltage)		
IEC 61800-5-1			
EMC			
Directive 2014/30/EU (EMC) IEC 61800-3			
Approvals	RoHS Directive 2011/65/EU is now part of the CE marking procedure		
UL and cUL recognized component to UL 61800-5-1, E522139 IEC 61800-5-1	o: Kons Directive 2011/05/E0 is now part of the CE marking procedure		
Restriction of the Use of Certain Hazard	aus Substances (PoHS)		
Resultant of the USE of Certain Hazard	Directive 2011/65/EU (RoHS II) and its amendments EU Directive 2015/863		
	DIRECTIVE SOTT (ODD TT) GIR ITS GIRERATINE ED DIRECTIVE SOTD/002		

IPL-060-15

CAN COMMUNICATIONS

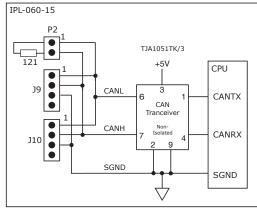
CAN

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where lowcost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CAN COMMUNICATION

IPL uses the CAN physical layer signals CANH, CANL, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). CME is used to save the node ID to flash in the drive. Node-ID 0 is reserved for the CANopen master on the network. A maximum of 127 CAN nodes are allowed on a single CAN bus.

CANOPEN COMMAND INPUTS


The graphic shows connectors in the IPL.

If the IPL is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown.

If there are multiple IPL on the mounting PCB then the terminating resistor should be near the IPL that is farthest from the CAN network connection to the PCB. The node Node-ID of the IPL may be set by using digital inputs, or programmed into flash memory in the drive.

J9 and J10 acept the CAN network cables. Either connector can be the IN port. The OUT port connects to 'downstream' nodes. If the IPL is the last node on a network, only the IN port is used. A 121 Ω terminator is required on the OUT port. The CAN master will typically have an internal 121 Ω resistor. If not, it should be provided externally.

		·
J9 Signals	Pin	J10 Signals
CANL	1	CANL
CANH	2	CANH
SGND	3	SGND
N.C.	4	N.C.

P2 connects to an internal 121 Ω resistor. Inserting a jumper between pins 1 & 2 will connect the resistor as a terminator. In a CAN network terminators are used on both ends to maintain the quality of the waveform.

AMP LED

A bi-color LED gives the state of the drive. Colors do not alternate, and can be solid ON or blinking. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one below will shown.

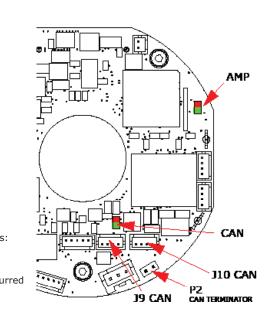
Red/Blinking = Red/Solid = Green/Slow-Blinking Green/Fast-Blinking = Green/Solid =

Latching fault. Operation can not resume until drive is Reset.

Transient fault condition. Drive can resume operation when the condition causing the fault is removed. = Drive OK but NOT-enabled. Can run when enabled.

ng = Positive or Negative limit switch active. Drive can only move in direction not inhibited by limit switch. = Drive OK and enabled. Can run in response to reference inputs or CANopen commands.

LATCHING FAULTS

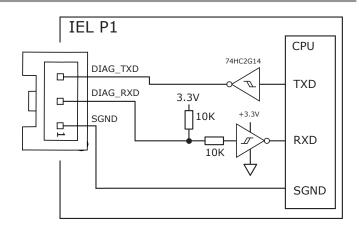

Default Short circuit (Internal or external) Drive over-temperature Motor over-temperature Feedback Error Following Error Optional (programmable) Over-voltage Under-voltage Motor Phasing Error Command Input Lost Motor Wiring Disconnected Over Current (latched)

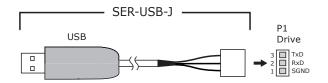
CAN DEVICE ID

CME can be used to program the device ID into flash memory. The acceptical range is 0 to 127.

CAN LED

The colors are pe	er CiA 303-3, V1.3.0
RUN	
	e state of the FSA (Finite State Automaton):
Off =	
	Pre-operational
	Safe-operational
On =	Operational
ERR	
Red: Shows error	rs such as watchdog timeouts and unsolicited IPL state changes due to local errors:
Off =	CANopen communications are working correctly
Blinking =	Invalid configuration, general configuration error
	Local error, slave has changed CANopen state autonomously
Double Flash =	PDO or CANopen watchdog timeout, or an application watchdog timeout has occurr

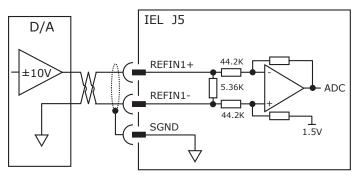




SERIAL COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 115,200 Baud. It can be used by CME for drive configuration and setup or by external equipment sending ASCII commands.

Signal	P1 Pins
DIAG_TXD	3
DIAG_RXD	2
SGND	1


MOTION COMMAND MODES

Three modes are supported: Position, Velocity, and Torque (Current) These can be controlled by:

- Analog Command
- Function Generator
- Programmed position
- CANopen Communication

ANALOG COMMAND (REFERENCE INPUT)

The analog input has a ± 10 Vdc range and 12-bit resolution The *scaling* of the input is programmable with CME. Scaling is the number of counts which are in the ± 10 V to ± 10 V range

FUNCTION GENERATOR

This appears in the block-diagram in CME when the Command Source is Function Generator. Functions: Sine Wave, Square Wave Amplitude: Counts Frequency: Hz (counts/sec)

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.05 kΩ
Resolution		12 Bit

Signal	J5 Pins
REFIN1+	5
REFIN1-	6

FUNCTION	POS	VEL	CUR
Analog Command	\checkmark	\checkmark	\checkmark
CAN	\checkmark	Not av	ailable
Function Generator	\checkmark	\checkmark	\checkmark
Software Programmed	\checkmark	\checkmark	\checkmark

PROGRAMMED POSITION

This appears in the block-diagram in CME when the CommandSource is Software Programmed.Programmed CommandMove:Relative, AbsoluteType:Trap, S-CurveDistance:Counts

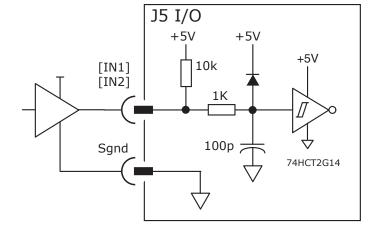
HIGH SPEED INPUTS

IN1 and IN2 are programmable to a selection of functions.

Each has a 100 ns RC filter when driven by active sources (CMOS, TTL, etc) and a 10 k Ω pull-up resistor to +5 Vdc.

In addition to the selection of functions, the active level is programmable. Input *level* functions have programmable HI or LO to activate the function.

Input *transition* functions are programmable to activate on LO -> HI, or HI -> LO transitions.


INPUT LEVEL FUNCTIONS

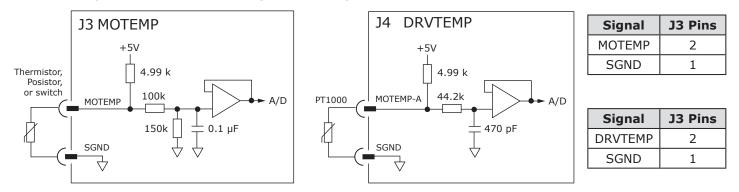
- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide
- Trajectory Update
- High Speed Position Capture

INPUT TRANSITION FUNCTIONS

- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

Input	Data	Notes
	HI	VT+ ≥ 1.3~2.0 Vdc
	LO	VT- ≤ 0.55~1.3 Vdc
Input Voltages	Hys	VH 0.4~0.79 Vdc
	Max	+6 Vdc
	Min	0 Vdc
Pull-up	R1	10 kΩ
	R2	1 kΩ
Low pass filter	C1	100 nF
	RC ¹	0.1 µs

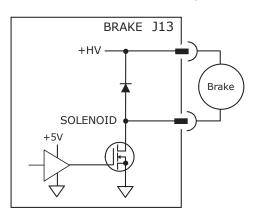
Signal	J5 Pins
IN1_ENABLE	1
IN2_ENABLE	2
GND	8


Consult Factory for Adapting 24V logic to 5V logic

5V logic. Do not exceed 6V. Do not connect a 24V logic to this input.

MOTOR TEMP AND DRIVE TEMP INPUTS

The analog input J3 Motemp, is for use with a motor overtemperature switch or thermistor The input voltage goes through a lowpass filter to a 12-bit A/D converter. Two thresholds are programmable. The first triggers an overtemp warning at 100 °C, the second will disable the drive at 200 °C. The J4 DRVTEMP is for PT1000 thermistors and disables the PWM outputs when they are 90 °C ±3 °C or greater. CME can select latching or non-latching modes for J4 DRVTEMP.

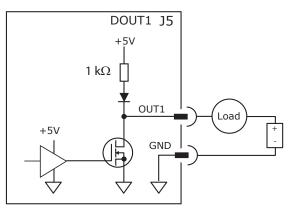


MOTOR BRAKE SOLENOID OUTPUT

A MOSFET with flyback diode drives a brake solenoid powered from +HV which can be up to +60 Vdc. In order to drive brakes at their rated voltage, the output will PWM the +HV at 16 kHz to produce the desired DC voltage for release. When released, the voltage required to hold it is lower than the rated voltage. A programmable delay time will keep the rated voltage applied and then fold back to the holding voltage. Maximum holding current is 1 Adc

Programmable parameters are:

Output Voltage:24 Vdc is default when $+HV \ge 24$ Vdc. Programmable to voltages $\le +HV$ Hold time delay: $0 \sim < msec >$ Default is 0 programmable in msecHold voltage:Vdc, $1 \sim +HV$ Default is 24 Vdc. Programmable to voltages $\le +HV$


Signal	J13 Pins
+HV	2
SOLENOID	1

GENERAL PURPOSE OUTPUT

Digital output DOUT1 is an open-drain MOSFET with 1 k Ω pull-up resistor to +5V through a diode. The output functions shown below are programmable to turn the output ON (HI) or OFF (LO) when active.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom event
- PWM Sync
- Custom Trajectory status
- Custom position-triggered output
- Program control

Signal	J5 Pins
DOUT1	3
GND	4

IPL-060-15

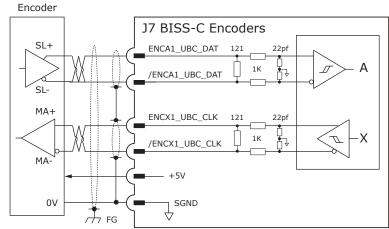
PRIMARY BISS-C ABSOLUTE ENCODER

BiSS is an Open Source digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface[®] and Interbus[®] with additional options.

BISS-C

Serial Synchronous Data Communication

Cyclic at high speed up to 64 bit per slave 2 unidirectional lines Clock and Data

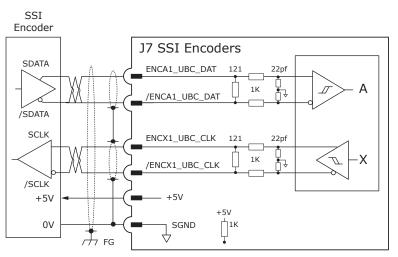

unidirectional lines Clock and Data

Line delay compensation for high speed data transfer Request for data generation at slaves Safety capable: CRC, Errors, Warnings Bus capability incl. actuators

Bidirectional

BiSS C-protocol: Continuous mode

Signal	J7 Pins	BISS-C
SGND	1	SGND
+5V	2	+5V
/ENCA1_UBC_DAT	3	SL-
ENCA1_UBC_DAT	4	SL+
/ENCB1	5	n.c.
ENCB1	6	n.c.
/ENCX1_UBC_CLK	7	MA-
ENCX1_UBC_CLK	8	MA+

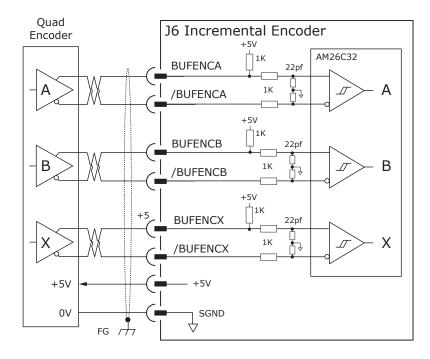


PRIMARY SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The IPL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable.

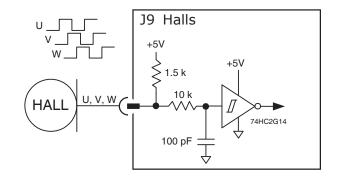
The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked-out on the falling edge and clocked-in on the rising edge of the Master.

Signal	J7 Pins	SSI
SGND	1	SGND
+5V	2	+5V
/ENCA1_UBC_DAT	3	/SDATA
ENCA1_UBC_DAT	4	SDATA
/ENCB1	5	n.c.
ENCB1	6	n.c.
/ENCX1_UBC_CLK	7	/SCLK
ENCX1_UBC_CLK	8	SCLK



SECONDARY INCREMENTAL ENCODER

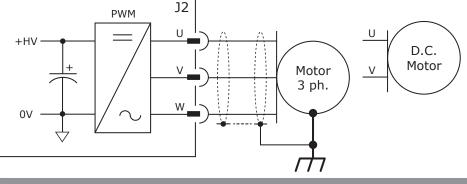
Quad A/B/X encoders have two signals that are 90° electrical separated producing four (quad) states of HI/LOW. They are also called *Incremental* because the states change as the motor moves but there is no indication of the absolute location of the motor. The X (index) signal pulses once in a rotation of the motor and is typically used with limit switches. Driving the motor into a hard stop and coming out to the index pulse produces an absolute position commonly used for 'homing' the motor.


Signal	J6 Pins	QUAD
SGND	1	SGND
+5V	2	+5V
/BUFENCA	3	/A
BUFENCA	4	А
/BUFENCB	5	/B
BUFENCB	6	В
/BUFENCX	7	/X
BUFENCX	8	Х

HALLS

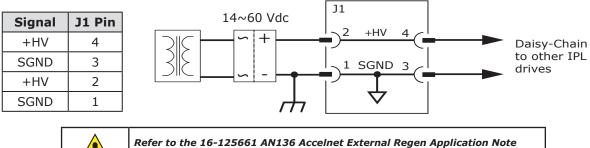
Hall sensors in a brushless motor produce signals from the magnetic field in the motor and provide commutation feedback without an encoder. When used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

Signal	J9 Pins
HALLU	5
HALLV	4
HALLW	3
+5V	2
SGND	1



MOTOR CONNECTIONS

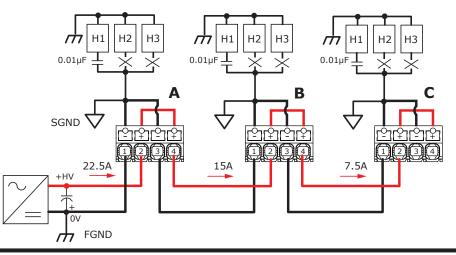
coplev


The drive output is a three-phase PWM inverter that converts the DC bus voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect motor frame and IPL frame for best results.

Signal	J2 Pin
Mot U	3
Mot V	2
Mot W	1

DC POWER CONNECTIONS

The power connector has two sets of +HV & GND contacts to facilitate daisy-chain wiring from drive to drive in a robot. These have ratings of 13.5 Adc so this should be considered when daisy-chaining.

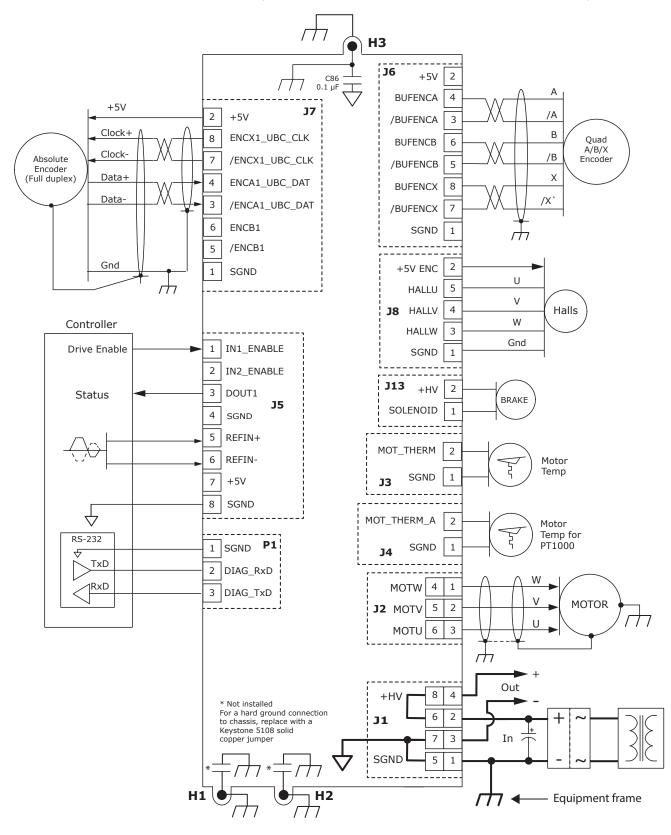


48V power is recommended. Do not exceed 65V.

POWER AND GROUNDING

The three standoffs are shown but only one has a capacitor to provide a single-point AC ground. The standoffs are conductive aluminum providing an AC path to Frame Ground (FGND). Multiple drives are shown as example of daisy-chain wiring of +HV and ground on J1. Note that J1 has a current rating of 13.5 Adc and the drive has a rating of 7.5 Adc. In practice it is not likely that the drives will be operating at their maximum continuous current. But, this should be taken into consideration so as not to damage the J1 connectors. If an installation requires multiple drives on a single drop from the power supply then a 'bus' of wires that can handle the total current should be used with taps for each drive sized for the individual currents.

AWG 13 with a rating of 7.4 A is the smallest wire that take the drive's continuous current. Many applications will use less current.

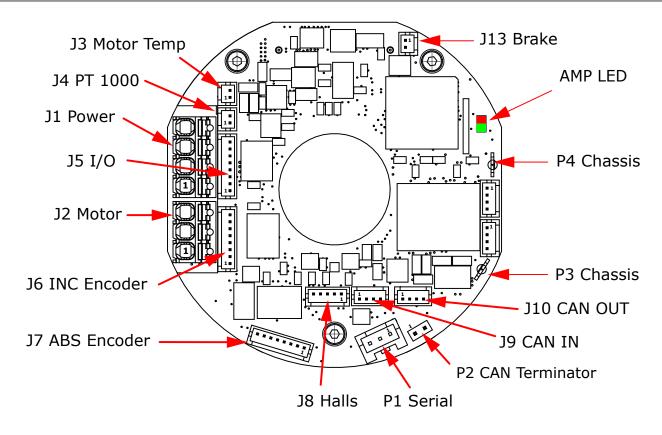


copley controls Integrated Servo Drive

IPL-060-15

TYPICAL CONNECTIONS

NOTE: The capacitor on H1 can be replaced with a shunt which then connects Signal Ground to the standoff that is in contact with the equipment frame that has earth grounding. When the external power supply (-) is connected to earth near the drive it will provide SGND in all of the connected drives with a common potential.



Integrated Servo Drive IPL-060-15

CONNECTORS

J1: Power

Signal	Function
+HV	Power Output
GND	Power Return
+HV	Power Input
GND	Power Return
	+HV GND +HV

Phoenix: 1823214

J2: Motor

Pin	Signal	Function
3	MOT-U	Motor Phase U
2	MOT-V	Motor Phase V
1	MOT-W	Motor Phase W

J7: Primary Absolute Encoder

synthesis and a second contract of the second		
Pin	Signal	Function
8	ENCX1_UBC_CLK	Biss C Clock, Incremental X
7	/ENCX1_UBC_CLK	Biss C /Clock, Incremental /X
6	ENCB1	Incremental B
5	/ENCB1	Incremental /B
4	ENCA1_UBC_DAT	Biss C Data, Incremental A
3	/ENCA1_UBC_DAT	Biss C /Data, Incremental /A
2	+5VENC	+5V Encoder Supply
1	GND	+5V Supply Return (0V)

Hirose: DF13-8P-1.25DSA

Phoenix: 1823201

Notes

- J1: Contacts are push-in spring type. Wire size 24~16 AWG, stripping length 8 mm. Tool: slot-headed screwdriver $0.4 \times 2.5 \text{ mm}$ (~0.1").
- J2: Contacts are push-in spring type. Wire size $24 \sim 16$ AWG, stripping length 8 mm. Tool: slot-headed screwdriver 0.6 x 3.5 mm ($\sim 1/8''$)

Integrated Servo Drive IPL-060-15

CONNECTORS

J6: Secondary Incremental Encoder

Pin	Signal	Function
8	BUFENCX	Incremental X (+)
7	/BUFENCX	Incremental X (-)
6	BUFENCB	Incremental B (+)
5	/BUFENCB	Incremental B (-)
4	BUFENCA	Incremental A (+)
3	/BUFENCA	Incremental A (-)
2	+5V	+5V Supply
1	GND	Ground

Hirose: DF13-8P-1.25DSA

J8: Halls

Pin	Signal	Function
1	GND	Signal Ground
2	+5V	+5V Output
3	HALLW	Hall W Input
4	HALLV	Hall V Input
5	HALLU	Hall U Input

Hirose: DF13-5P-1.25DSA

J5: I/O

Pin	Signal	Function
1	IN1_Enable	Digital Input 1
2	IN1_Enable	Digital Input 2
3	DOUT1	Digital Output 1
4	GND	Ground
5	REFIN1+	Analog Input (+)
6	REFIN-	Analog Input (-)
7	+5V	+5V Power output
8	GND	Ground

Hirose: DF13-8P-1.25DSA

P1: Serial Port

Pin	Signal	Function
3	GND	Signal Ground
2	DIAG_RXD	Serial Input
1	DIAG_TXD	Seral Output

J.S.T: B03B-PASK(LF)(SN)

J10 CANopen OUT	J10	CANopen	OUT
-----------------	------------	---------	-----

J9 CANopen IN

	Signal	Pin
1 CANL	CANL	1
2 CANH	CANH	2
3 GND	GND	3
		2 3

Hirose: DF13-4P-1.25DSA

P3: CAN Shield

Pin	Signal	Function
1	Chassis	CAN Drain

TE: 735187-2

P4: CAN Shield

	Pin Signal		Function
	1	Chassis	CAN Drain
1	TE, 725107 2		

TE: 735187-2

J13: Brake

Pin	Signal	Function
1	BRAKE	PWM Brake control
2	+HV	Output

Hirose: DF13-2P-1.25DSA

J3: Motor Temp

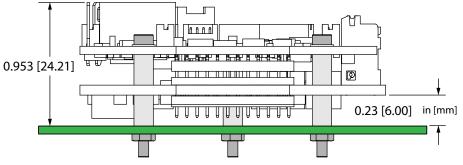
Signal	J3 Pins
MOTOR_THERMISTOR	2
SGND	1
Limes DE12 2D 1 2EDCA	

Hirose: DF13-2P-1.25DSA

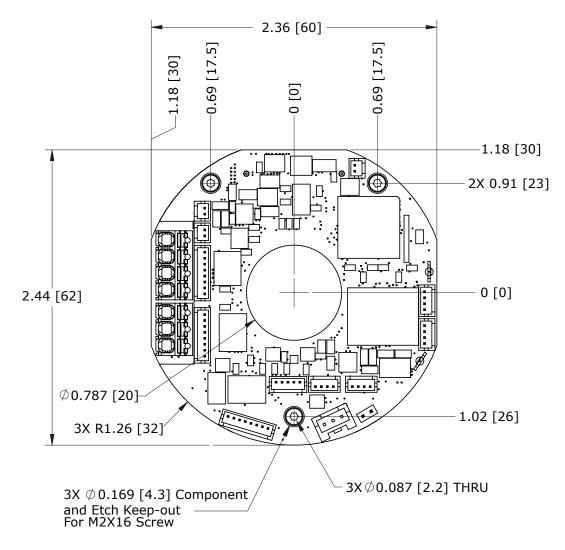
J4: PT 1000

Signal	J4 Pins
MOTOR_THERMISTOR_A	2
SGND	1
	-

Hirose: DF13-2P-1.25DSA


Notes:

Part numbers shown here are on the IPL-060-15. Hirose parts are single-row headers, 1.25 mm pitch TE parts are Faston tabs 2.8 mm (.11 in) Molex part is a single-row header, 2.00 mm pitch Mating cable connector part numbers are shown on page 16 in the IPL-CK table.


DIMENSIONS IN [MM]

This shows panel mounting of the drive with 6.00 mm spacers.

3X Customer supplied M2X16 Screws and nuts

Top view of drive with dimensions:

THIS PAGE LEFT BLANK INTENTIONALLY

ORDERING GUIDE

INTEGRATED SERVO DRIVE

IPL-060-15 Integrated CANopen Servo Drive, 15 A, 14~60 V

ACCESSORIES

IPL-CK	Connector Kit
SER-USB-J	USB to Serial Cable Kit

ORDERING GUIDE: CONNECTOR KIT WITH SHELLS, CRIMP CONTACTS, & FLYING LEADS

CONNECTOR KIT: IPL-CK

	QTY	REF	NAME	DESCRIPTION	MFGR: PART NUMBER
	1	J1,J2	Motor, Power	ТооІ	Wago: 734-231
	3	J5, J6, J7	I/O,Encoder 1 Abs, Encoder 2 Inc	Connector, socket, single row, 1.25 mm, 8 pos	Hirose: DF13-8S-1.25C
	1	J8	Halls	Connector, socket, single row, 1.25 mm, 5 pos	Hirose: DF13-5S-1.25C
	3	J3, J13	Motor Temp, Brake solenoid	Connector, socket, single row, 1.25 mm, 2 pos	Hirose: DF13-2S-1.25C
	2	J9, J10	CANopen IN,OUT	Connector, socket, single row, 1.25 mm, 4 pos	Hirose: DF13-4S-1.25C
IPL-CK Connector	43	43 Crimp socket, 26~30 AWG, gold			Hirose: DF13-2630SCFA
Kit			White Flying Lead with socket at b	oth ends, 26 AWG, gold, 12"	Hirose: H4BBG-10112-W6
	3	J7, J8, J11,	Red Flying Lead with socket at both ends, 26 AWG, gold, 12"		Hirose: H4BBG-10112-R6
	4	J12, J13	Black Flying Lead with socket at bo	oth ends, 26 AWG, gold, 12"	Hirose: H4BBG-10112-B6
	1		Blue Flying Lead with socket at bo	th ends, 26 AWG, gold 12"	Hirose: H4BBG-10112-L6
	1	P1	Serial Port	Connector, 3 pin	J.S.T: PAP-03V-S
	3			CONTC SKT CRMP 26-22GA SN	J.S.T: SPHD-001T-P0.5
	2	P3, P4	CAN Shields	Faston, 22~26 AWG	TE: 7-520366-2

16-131753 Document Revision History

Revision	Date	Remarks
AA	July 23, 2021	Initial release
AB	June 8, 2022	Changed Serial Cable reference to SER-USB-J. Added frame grounds to p. 11 Changed P3 & P4 names to Chassis on p. 12

CANopen is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Note: Specifications subject to change without notice