

GENERAL SPECIFICATIONS

Advanced Feature Set

- 32-bit floating point filters
- Multiple advanced filters
- · Frequency analysis tools

Control Modes

- Profile Position-Velocity-Torque
- · Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- · Camming, Gearing

Command Interface

- EtherCAT
- ASCII, Serial Binary, and discrete I/O
- Stepper or Quad A/B position commands
- PWM Velocity-Torque command
- Master encoder (Gearing, Camming)
- ±10 V Position-Velocity-Torque

Communications

- EtherCAT
- RS-232

Feedback

- Primary Absolute
 BiSS-C Unidirectional
 SSI Absolute or Incremental
- Primary & Secondary Incremental Digital Quad A/B/X
- Digital Halls

I/O

- 2 Digital high-speed input
- 1 Analog motor overtemp input
- 1 Analog motor overtemp PT1000 input
- 1 Analog differential input
- 1 Digital PWM brake output
- 1 Digital general purpose output

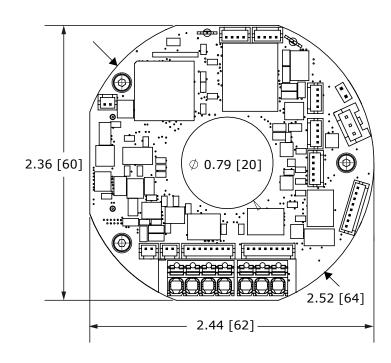
Dimensions

60 x 62 x 22.78 [2.36 x 2.44 x 0.90] mm [in]
 Center cutout diameter 20 [0.79] mm [in]
 Outer diameter 64 [2.52] mm [in]

Description

IEL-060-15 is a miniature dual-board servo drive designed for mounting on motors or in robotic joints. A large cutout in the center allows power, network, and other device cables to pass through.

INSTALLATION


This drive can only be installed by trained personnel

Actual Size

Model	Ic	Ιp	Unit	VDC
IEL-060-15	7.5	15	Adc	14~60 VDC

Tel: 781-828-8090

GENERAL SPECIFICAT	IONS			
Test conditions: Load = Wye connected MODEL	load: 1 n	$_{ m DH}$ + 1Ω line-line. Ambient temper	ature = 25 °C. +F	HV = HVmax
		1EL-060-15		
OUTPUT POWER Peak Current		15 (10.6)	Adc (Arm	ns, sinusoidal)
Peak time		13 (10.0)	Sec (AIII	is, sinusoluar)
Continuous current		7.5 (5.3)		ns, sinusoidal)
INPUT POWER				
HVmin to HVmax		+14 to +60		sformer-isolated
<u>I</u> peak		15 (10.6)		ec) peak (Arms)
Icont		7.5 (5.3)		nuous (Arms)
	encoder al	nd disabled, 6 W with no encoder a	ina max continuot	us output current
PWM OUTPUTS Type M PWM ripple frequency	OSFET 3- _I	ohase inverter, 16 kHz center-weig 32 kH		space-vector modulation
BANDWIDTH			·-	
Current loop, small signal		2.5 kHz typical, bandwidth will v	ary with tuning &	load inductance
Current loop update rate		16 kHz (62.5 μs)		
Current sense resolution		12 bits		
Position & Velocity loop update rat	:e	4 kHz (250 µs)	dwidth	
HV Compensation Minimum load inductance		Changes in HV do not affect ban 100 µH line-line	iuwiutii	
COMMAND INPUT		200 hit mic mic		
		CAN and and it is	FHCAT (C. =). Coalia Constantina Parii (M. I. V.
EtherCAT:		CANopen application protocol ov Profile Position/Velocity/Torque,): Cyclic Synchronous Position/Velocity/Torque
Stand-alone mode		r rome rosition, velocity, lorque,	interpolated FOSIL	ion (i vi), noning
Digital position reference		Pulse/Direction, CW/CCW		Stepper commands (2 MHz maximum rate)
		Quad A/B Encoder		2 M line/sec, 8 Mcount/sec (after quadrature)
Digital torque & velocity refer	ence	PWM , Polarity		PWM = 0% - 100%, Polarity = 1/0
		PWM 50%		PWM = 50% ±50%, no polarity signal required
		PWM frequency range PWM minimum pulse width		1 kHz minimum, 100 kHz maximum 220 ns
Indexing		Up to 32 sequences can be laund	ched from inputs	
Camming		Up to 10 CAM tables can be stor		
ASCII		LVTTL, 9600~115,200 Baud, 3-v		
DIGITAL INPUTS				
Number	2			
IN1, IN2				-up to +5 Vdc, maximum input voltage = +12 Vdc
	RC time	-constants assume active drive on	inputs and do not	include 10 kt/2 puil-ups.
ANALOG INPUTS Number	2			
AIN1		emperature 4.99 kΩ pul	I-un to +5V overt	emp threshold programmable from CME
AIN2				input impedance, ±10 Vdc range
			4 kHz, 12 bits	pro process, and a second
DIGITAL OUTPUTS				
Number	2			
OUT1		open drain, 1 k Ω pullup to +5V, fu		
OUT2		MOSFET open-drain with flyback did oltage, holding voltage, delay to ho		
SERIAL COMMUNICATION PORT	nated V	onage, notaing voltage, delay to fit	g voicage, all	a requeries programmable
Signals	RxD. Tx	D, GND, TTL levels		
Mode		lex, DTE serial communication port	t for drive setup a	ind control, 9,600~115,200 Baud
Protocol				•
Isolation	Non-iso	ated. Referenced to Signal Ground		
ETHERCAT PORT				
Format	100BAS			
Signals				plated, referenced to signal ground
Protocol		T, CANopen Application Protocol ov		
Isolation	ınterna	magnetics. Max voltage with resp	ect to grounds: 32	Z VUC
DC POWER OUTPUT	252		D	condend on the de
+5 Vdc	250 mA	maximum, shared by dual encode	rs. Protected for c	overioad or shorts
MOTOR CONNECTIONS	Drivo	itnute to 2 phase brushless mater	Myo or dolta see	nactad
Motor U,V,W		itputs to 3-phase brushless motor,	wye or deita coni	necteu
For DC brush motor use outputs U & V Minimum inductance: 100 µH line-line				
Encoders	2 inputs. See FEEDBACK on p. 8			
Halls	U,V,W. See FEEDBACK on p. 8			
Motemp		alog input is programmable to disa or less than a programmed value	able the drive if m	otor sensor voltage is
INDICATORS	g. 50101	2 a p. ogrammed value		
INDICATORS EtherCAT	RUN:	Green, shows the state of the Ethe	rCAT State Machi	ne
ERR: Red, shows that an error condition exists				
	L/A:	Green, shows the state of the netw	vork on each port	
AMP	Status:	Green shows the drive status, Red	shows fault condi	ition. Bicolor LEDs operate independently

Tel: 781-828-8090

Fax: 781-828-6547

Page 2 of 16

GENERAL SPECIFICATIONS

FEEDBACK

Absolute encoder:

MA+, MA- (X,/X), SL+, SL- (A,/A) signals, clock output from drive, data returned from encoder. Clk, /Clk, (X,/X), Data, /Data (A,/A) signals, clock output from drive, data returned from encoder Encoder data inputs and clock outputs are differential with internal 121 Ω terminators BiSS (B&C) Unidirectional SSI

Incremental encoder: Quadrature A/B/X

A, B, X: single-ended (X Index signal not required) Schmitt trigger, 100 ns RC filter, 5 Vdc compatible, 10 k Ω pull-up to +5 Vdc

5 MHz maximum line frequency (20 M counts/sec)

Digital Halls: U, V, W: Single-ended, 120° electrical phase difference between U-V-W signals

 $+5~\text{Vdc}~\pm2\%$ @ 250 mAdc max, shared by dual encoders

Encoder power **PROTECTIONS**

HV Overvoltage $+HV > +62 \pm 1 Vdc$ Drive outputs turn off until +HV is $< +62 \pm 1 \text{ Vdc}$ HV Undervoltage $+HV < +14 \pm 1 Vdc$ Drive outputs turn off until $+HV > +14 \text{ Vdc } \pm 0.5 \text{ Vdc}$ PC Board > 95 ±3 °C Drive over temperature Programmable as latching or temporary fault

Short circuits Output to output, output to ground, output to +HV, internal PWM bridge faults

Regen+ to GND, or regen- to +HV I²T Current limiting Programmable: continuous current, peak current, peak time for drive and motor

Latching / Non-Latching Programmable response to errors Motor Overtemperature AIN1 has two programmable thresholds. The first one triggers an overtemp warning

and the second one disables the drive. Expected thresholds are 100~200 °C

Loss of Feedback (BiSS encoders) The PWM outputs are disabled until the feedback is restored.

Selectable as either latching or non-latching

MECHANICAL & ENVIRONMENTAL

Shape is round with flats

Length & width: 60 x 62 mm (2.36 x 2.44 in)

Center hole diameter: 20 mm (0.79 in), outer diameter 64 mm (2.52 in)

45g

Ambient temperature 0 to +70 °C operating, -40 to +85 °C storage in occordance to IEC 60068-2-1 and IEC 60068-2-2

Humidity 0 to 95% RH, non-condensing per IEC 60068-2-78 ≤ 2000 m (6,500 ft) per IEC 60068-2-13 Altitude 2 g peak, 10~500 Hz (sine) per IEC 60068-2-6 Vibration 10 g, 10 ms, half-sine pulse per IEC 60068-2-27 Shock

Pollution degree 2 per IEC 60664-1 Contaminants

AGENCY STANDARDS CONFORMANCE

Standards and Directives Product Safety

Directive 2014/35/EU (Low Voltage)

IEC 61800-5-1

Directive 2014/30/EU (EMC)

IEC 61800-3

Approvals

Weight

UL and cUL recognized component to: UL 61800-5-1, E522139

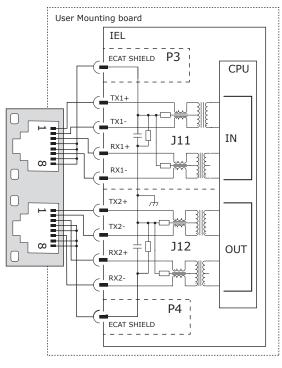
IEC 61800-5-1

RoHS Directive 2011/65/EU is now part of the CE marking procedure

Tel: 781-828-8090

Restriction of the Use of Certain Hazardous Substances (RoHS)

Directive 2011/65/EU (RoHS II) and its amendments EU Directive 2015/863


Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-127915 Rev AB

Fax: 781-828-6547 Page 3 of 16

ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes. Data protocol is CANopen application protocol over EtherCAT (CoE) based on CiA 402 for motion control devices. More information on EtherCAT can be found on this web-site: http://ethercat.org/default.htm

The table below shows the standard EtherCAT connections to RJ-45 sockets connected as shown in the graphic.

J11 Signals	Pin	J12 Signals
TX1+	1	TX2+
TX1-	2	TX2-
RX1+	3	RX2+
RX1-	6	RX2-

P3 Signals	Pin	P4 Signals
CHASSIS	1	CHASSIS

AMP LED

A bi-color LED gives the state of the drive. Colors do not alternate, and can be solid ON or blinking. If multIELe conditions occur, only the top-most condition will be displayed.

When that condition is cleared the next one below will be shown.

Red/Blinking Latching fault. Operation can not resume until drive is Reset. Red/Solid

Transient fault condition. Drive can resume operation when

the condition causing the fault is removed.

Green/Slow-Blinking = Drive OK but NOT-enabled. Can run when enabled.

Green/Fast-Blinking Positive or Negative limit switch active. Drive can only move

in direction not inhibited by limit switch.

Green/Solid Drive OK and enabled. Can run in response to reference

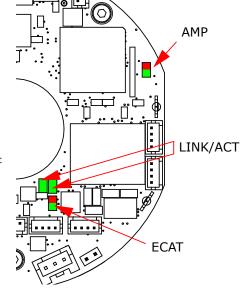
inputs or EtherCAT commands.

LATCHING FAULTS

Default Optional (programmable) Short circuit (Internal or external) Over-voltage Under-voltage Drive over-temperature Motor over-temperature Motor Phasing Error Feedback Error Command Input Lost Motor Wiring Disconnected Following Error Over Current (latched)

The bi-color STAT LED combines the functions of the RUN and ERR LEDs. Green and red colors alternate, and each color has a separate meaning:

Green is "RUN" or EtherCAT State Machine: Red is "ERR" indicator:


= INIT = Invalid configuration Blinking Single Flash = Unsolicited state change = PRE-OPERATIONAL Single Flash = SAFE-OPERATIONAL Double Flash = Application watchdog timeout = OPERATIONAL

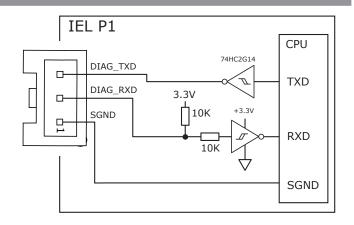
L/A (LINK/ACT) LED

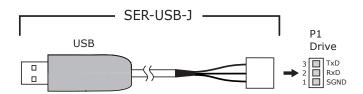
A green LED indicates the state of the EtherCAT network:

LED Link Activity Condition ON Yes No Port Open

Flickering Yes Yes Port Open with activity (N/A)Port Closed

Tel: 781-828-8090

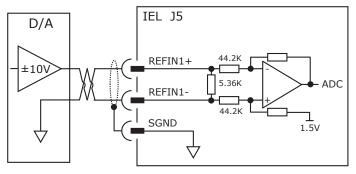

Fax: 781-828-6547 Page 4 of 16



SERIAL COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 115,200 Baud. It can be used by CME for drive configuration and setup or by external equipment sending ASCII commands.

Signal	P1 Pins
DIAG_TXD	3
DIAG_RXD	2
SGND	1


MOTION COMMAND MODES

Three modes are supported: Position, Velocity, and Torque (Current) These can be controlled by:

- Analog Command
- Function Generator
- Programmed Position
- EtherCAT Communication

ANALOG COMMAND (REFERENCE INPUT)

The analog input has a ± 10 Vdc range and 12-bit resolution The *scaling* of the input is programmable with CME. Scaling is the number of counts which are in the ± 10 V to ± 10 V range

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.05 kΩ
Resolution	12 Bit	

Signal	J5 Pins
REFIN1+	5
REFIN1-	6

FUNCTION	POS	VEL	CUR
Analog Command	√	√	√
EtherCAT	√	Not av	ailable
Function Generator	√	√	√
Software Programmed	√	√	√

FUNCTION GENERATOR

This appears in the block-diagram in CME when the

Command Source is Function Generator. Functions: Sine Wave, Square Wave

Amplitude: Counts Frequency: Hz (counts/sec)

PROGRAMMED POSITION

This appears in the block-diagram in CME when the Command Source is Software Programmed.

Tel: 781-828-8090

Programmed Command

Move: Relative, Absolute Type: Trap, S-Curve

Distance: Counts

HIGH SPEED INPUTS

IN1 and IN2 are programmable to a selection of functions.

Each has a 100 ns RC filter when driven by active sources (CMOS, TTL, etc) and a 10 k Ω pull-up resistor to +5 Vdc.

In addition to the selection of functions, the active level is programmable.

Input level functions have programmable HI or LO to activate the function.

Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT LEVEL FUNCTIONS

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- · Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide
- Trajectory Update
- High Speed Position Capture

INPUT TRANSITION FUNCTIONS

- Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

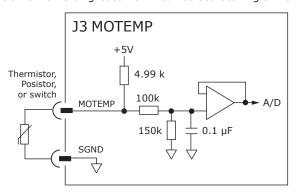
Input	Data	Notes
	HI	VT+ ≥ 1.3~2.0 Vdc
	LO	VT- ≤ 0.55~1.3 Vdc
Input Voltages	Hys	VH 0.4~0.79 Vdc
	Max	+6 Vdc
	Min	0 Vdc
Pull-up	R1	10 kΩ
	R2	1 kΩ
Low pass filter	C1	100 nF
	RC ¹	0.1 μs

Signal	J5 Pins
IN1_ENABLE	1
IN2_ENABLE	2
GND	8

Consult Factory for Adapting 24V logic to 5V logic

5V logic. Do not exceed 6V. Do not connect a 24V logic to this input.

Tel: 781-828-8090


Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-127915 Rev AB

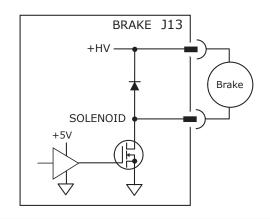
Fax: 781-828-6547 Page 6 of 16

MOTOR TEMP AND DRIVE TEMP INPUTS

The analog input J3 Motemp, is for use with a motor overtemperature switch or thermistor. The input voltage goes through a low-pass filter to a 12-bit A/D converter. Two thresholds are programmable. The first triggers an overtemp warning at 100 °C, the second will disable the drive at 200 °C. The J4 DRVTEMP is for PT1000 thermistors and disables the PWM outputs when they are $90 \text{ °C} \pm 3 \text{ °C}$ or greater. CME can select latching or non-latching modes for J4 DRVTEMP.

Signal	J3 Pins
MOTEMP	2
SGND	1

Signal	J4 Pins
DRVTEMP	2
SGND	1

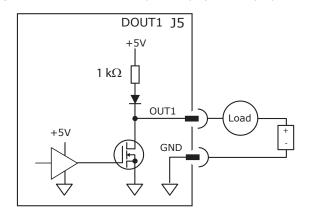

MOTOR BRAKE SOLENOID OUTPUT

A MOSFET with flyback diode drives a brake solenoid powered from +HV which can be up to +60 Vdc. In order to drive brakes at their rated voltage, the output will PWM the +HV at 16 kHz to produce the desired DC voltage for release. When released, the voltage required to hold it is lower than the rated voltage. A programmable delay time will keep the rated voltage applied and then fold back to the holding voltage. Maximum holding current is 1 Adc Programmable parameters are:

Output Voltage: 24 Vdc is default when +HV ≥24 Vdc. Programmable to voltages ≤ +HV

Hold time delay: 0~<msec> Default is 0 programmable in msec

Hold voltage: Vdc, 1~+HV Default is 24 Vdc. Programmable to voltages ≤ +HV


Signal	J13 Pins
+HV	2
SOLENOID	1

GENERAL PURPOSE OUTPUT

Digital output DOUT1 is an open-drain MOSFET with 1 $k\Omega$ pull-up resistor to +5V through a diode. The output functions shown below are programmable to turn the output ON (HI) or OFF (LO) when active.

OUTPUT FUNCTIONS

- Fault
- Brake
- Custom event
- PWM Sync
- Custom Trajectory status
- · Custom position-triggered output
- Program control

Tel: 781-828-8090

Signal	J5 Pins
DOUT1	3
GND	4

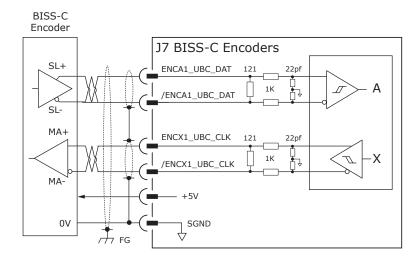
PRIMARY BISS-C ABSOLUTE ENCODER

BiSS is an Open Source digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication

Cyclic at high speed up to 64 bit per slave

2 unidirectional lines Clock and Data

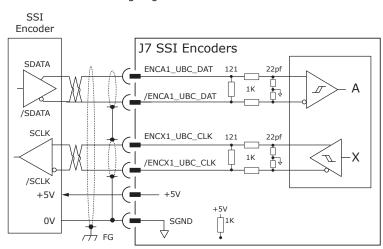

Line delay compensation for high speed data transfer

Request for data generation at slaves Safety capable: CRC, Errors, Warnings

Bus capability incl. actuators Bidirectional

BiSS C-protocol: Continuous mode

Signal	J7 Pins	BISS-C
SGND	1	SGND
+5V	2	+5V
/ENCA1_UBC_DAT	3	SL-
ENCA1_UBC_DAT	4	SL+
/ENCB1	5	n.c.
ENCB1	6	n.c.
/ENCX1_UBC_CLK	7	MA-
ENCX1_UBC_CLK	8	MA+



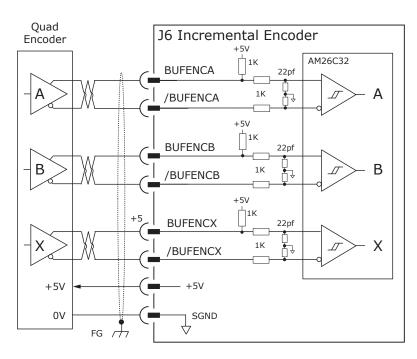
PRIMARY SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The IEL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable.

The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked-out on the falling edge and clocked-in on the rising edge of the Master.

Signal	J7 Pins	SSI
SGND	1	SGND
+5V	2	+5V
/ENCA1_UBC_DAT	3	/SDATA
ENCA1_UBC_DAT	4	SDATA
/ENCB1	5	n.c.
ENCB1	6	n.c.
/ENCX1_UBC_CLK	7	/SCLK
ENCX1_UBC_CLK	8	SCLK

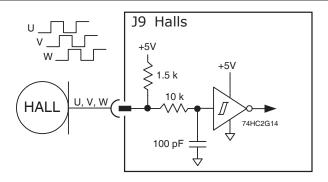
Tel: 781-828-8090


Fax: 781-828-6547

Page 8 of 16

SECONDARY INCREMENTAL ENCODER

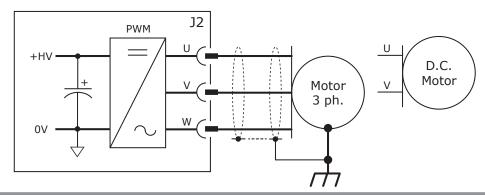
Quad A/B/X encoders have two signals that are 90° electrical separated producing four (quad) states of HI/LOW. They are also called *Incremental* because the states change as the motor moves but there is no indication of the absolute location of the motor. The X (index) signal pulses once in a rotation of the motor and is typically used with limit switches. Driving the motor into a hard stop and coming out to the index pulse produces an absolute position commonly used for 'homing' the motor.


Signal	J6 Pins	QUAD
SGND	1	SGND
+5V	2	+5V
/ENCA1_UBC_DAT	3	/A
ENCA1_UBC_DAT	4	Α
/ENCB1	5	/B
ENCB1	6	В
/ENCX1_UBC_CLK	7	/X
ENCX1_UBC_CLK	8	Х

HALLS

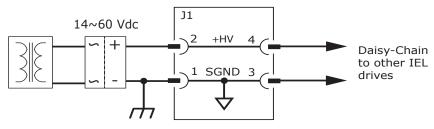
Hall sensors in a brushless motor produce signals from the magnetic field in the motor and provide commutation feedback without an encoder. When used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

Signal	J9 Pins
HALLU	5
HALLV	4
HALLW	3
+5V	2
SGND	1


Tel: 781-828-8090

MOTOR CONNECTIONS

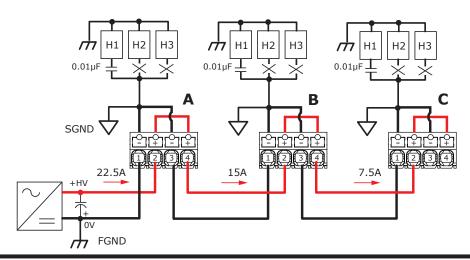
The drive output is a three-phase PWM inverter that converts the DC bus voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect motor frame and IEL frame for best results.


Signal	J2 Pin
Mot U	3
Mot V	2
Mot W	1

DC POWER CONNECTIONS

The power connector has two sets of +HV & GND contacts to facilitate daisy-chain wiring from drive to drive in a robot. These have ratings of 13.5 Adc so this should be considered when daisy-chaining.

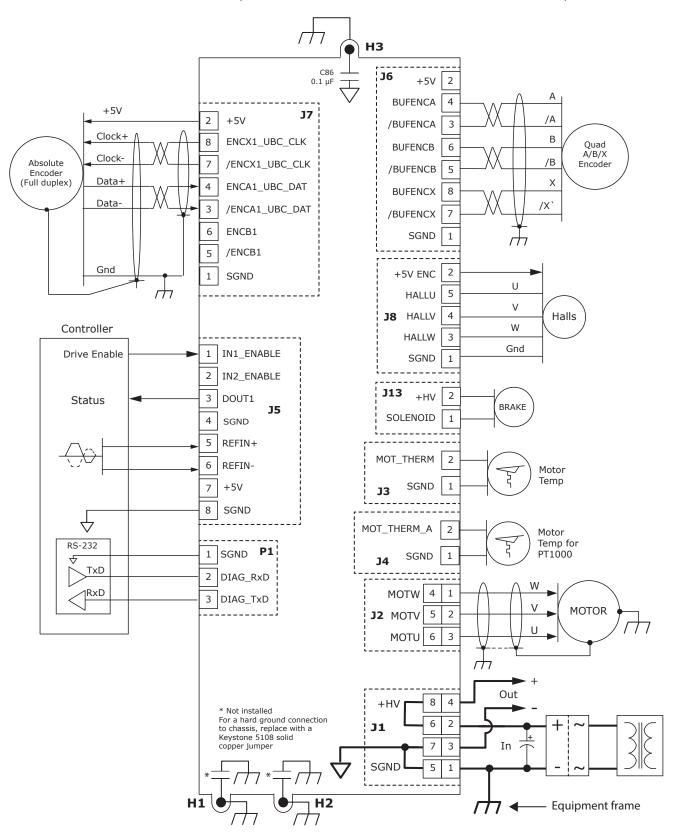
Signal	J1 Pin
+HV	4
SGND	3
+HV	2
SGND	1


Refer to the 16-125661 AN136 Accelnet External Regen Application Note

48V power is recommended. Do not exceed 65V.

POWER AND GROUNDING

The three standoffs are shown but only one has a capacitor to provide a single-point AC ground. The standoffs are conductive aluminum providing an AC path to Frame Ground (FGND). MultIELe drives are shown as example of daisy-chain wiring of +HV and ground on J1. Note that J1 has a current rating of 13.5 Adc and the drive has a rating of 7.5 Adc. In practice it is not likely that the drives will be operating at their maximum continuous current. But, this should be taken into consideration so as not to damage the J1 connectors. If an installation requires multiple drives on a single drop from the power supply then a 'bus' of wires that can handle the total current should be used with taps for each drive sized for the individual currents.


AWG 13 with a rating of 7.4 A is the smallest wire that take the drive's continuous current. Many applications will use less current.

TYPICAL CONNECTIONS

NOTE: The capacitor on H1 can be replaced with a shunt which then connects Signal Ground to the standoff that is in contact with the equipment frame that has earth grounding. When the external power supply (-) is connected to earth near the drive it will provide SGND in all of the connected drives with a common potential.

Tel: 781-828-8090

Fax: 781-828-6547

Page 11 of 16

CONNECTORS

J1: Power

Pin	Signal	Function
4	+HV	Power Output
3	GND	Power Return
2	+HV	Power Input
1	GND	Power Return

Phoenix: 1823214

J2: Motor

Pin	Signal	Function
3	MOT-U	Motor Phase U
2	MOT-V	Motor Phase V
1	MOT-W	Motor Phase W

Phoenix: 1823201

J7: Primary AbsoluteEncoder

Pin	Signal	Function
8	ENCX1_UBC_CLK	Biss C Clock, Incremental X
7	/ENCX1_UBC_CLK	Biss C /Clock, Incremental /X
6	ENCB1	Incremental B
5	/ENCB1	Incremental /B
4	ENCA1_UBC_DAT	Biss C Data, Incremental A
3	/ENCA1_UBC_DAT	Biss C /Data, Incremental /A
2	+5VENC	+5V Encoder Supply
1	GND	+5V Supply Return (0V)

Tel: 781-828-8090

Hirose: DF13-8P-1.25DSA

Notes

J1: Contacts are push-in spring type. Wire size $24{\sim}16$ AWG, stripping length 8 mm. Tool: slot-headed screwdriver 0.4×2.5 mm (${\sim}0.1''$).

J2: Contacts are push-in spring type. Wire size $24{\sim}16$ AWG, stripping length 8 mm. Tool: slot-headed screwdriver 0.6 x 3.5 mm (${\sim}1/8$ ")

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-127915 Rev AB

Fax: 781-828-6547 Page 12 of 16

CONNECTORS

J6: Secondary Incremental Encoder

Pin	Signal	Function
8	BUFENCX	Incremental X (+)
7	/BUFENCX	Incremental X (-)
6	BUFENCB	Incremental B (+)
5	/BUFENCB	Incremental B (-)
4	BUFENCA	Incremental A (+)
3	/BUFENCA	Incremental A (-)
2	+5V	+5V Supply
1	GND	Ground

Hirose: DF13-8P-1.25DSA

J8: Halls

Pin	Signal	Function
1	GND	Signal Ground
2	+5V	+5V Output
3	HALLW	Hall W Input
4	HALLV	Hall V Input
5	HALLU	Hall U Input

Hirose: DF13-5P-1.25DSA

J5: I/O

Pin	Signal	Function
1	IN1_Enable	Digital Input 1
2	IN1_Enable	Digital Input 2
3	DOUT1	Digital Output 1
4	GND	Ground
5	REFIN1+	Analog Input (+)
6	REFIN-	Analog Input (-)
7	+5V	+5V Power output
8	AGND	Analog Ground

Hirose: DF13-8P-1.25DSA

P1: Serial Port

Pin	Signal	Function
1	GND	Signal Ground
2	DIAG_RXD	Serial Input
3	DIAG_TXD	Seral Output

J.S.T: B03B-PASK(LF)(SN)

J11 EtherCAT OUT

Pin Signal 1 RX2+ 2 RX2 3 TX2+ 4 TX2

J12 EtherCAT IN

Pin	Signal
1	RX1+
2	RX1-
3	TX1+
4	TX1-

Hirose: DF13-4P-1.25DSA

P3: EtherCAT Shield

Pin	Signal	Function
1	Chassis	EtherCAT Drain

TE: 735187-2

P4: EtherCAT Shield

Pin	Signal	Function
1	Chassis	EtherCAT Drain

TE: 735187-2

J13: Brake

Pin Signal		Function
1	BRAKE	PWM Brake control
2	+HV	Output

Hirose: DF13-2P-1,25DSA

J3: Motor Temp

Signal	J3 Pins
MOTOR_THERMISTOR	2
SGND	1

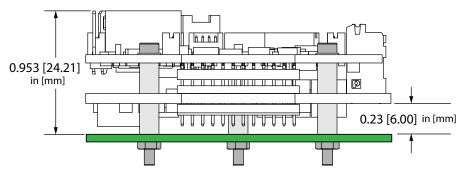
Hirose: DF13-2P-1.25DSA

J4: PT 1000

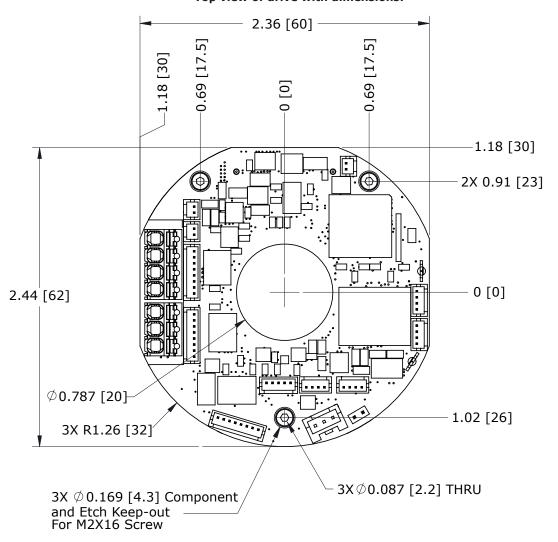
Signal	J4 Pins
MOTOR_THERMISTOR_A	2
SGND	1

Hirose: DF13-2P-1.25DSA

Tel: 781-828-8090


Notes:

Part numbers shown here are on the IEL-060-15. Hirose parts are single-row headers, 1.25 mm pitch TE parts are Faston tabs 2.8 mm (.11 in) Molex part is a single-row header, 2.00 mm pitch Mating cable connector part numbers are shown on page 16 in the IEL-CK table.


DIMENSIONS IN [MM]

This shows panel mounting of the drive with 6.00 mm spacers.

3X Customer supplied M2X16 Screws and nuts

Top view of drive with dimensions:

Tel: 781-828-8090

Fax: 781-828-6547

Page 14 of 16

Tel: 781-828-8090

Fax: 781-828-6547

Page 15 of 16

THIS PAGE LEFT BLANK INTENTIONALLY

ORDERING GUIDE

INTEGRATED SERVO DRIVE

ACCESSORIES

IEL-CK	Connector Kit	
SER-USB-J	USB to Serial Cable Kit	

ORDERING GUIDE: CONNECTOR KIT WITH SHELLS, CRIMP CONTACTS, & FLYING LEADS

CONNECTOR KIT: IEL-CK

	QTY	REF	NAME	DESCRIPTION	MFGR: PART NUMBER
	1	J1,J2	Motor, Power	Tool	Wago: 106388
	3	J5, J6, J7	I/O,Encoder 1 Abs, Encoder 2 Inc	Connector, socket, single row, 1.25 mm, 8 pos	Hirose: DF13-8S-1.25C
	1	Ј8	Halls	Connector, socket, single row, 1.25 mm, 5 pos	Hirose: DF13-5S-1.25C
	3	J3, J4, J13	Motor Temp, PT1000, Brake	Connector, socket, single row, 1.25 mm, 2 pos	Hirose: DF13-2S-1.25C
	2	J11,J12	EtherCAT IN,OUT	Connector, socket, single row, 1.25 mm, 4 pos	Hirose: DF13-4S-1.25C
IEL-CK Connector	43		Crimp socket, 26~30 AWG, gold		Hirose: DF13-2630SCFA
Kit	16	J3, J4, J5, J6 J7, J8, J11, J12, J13	White Flying Lead with socket at both ends, 26 AWG, gold, 12"		Hirose: H4BBG-10112-W6
	3		Red Flying Lead with socket at both ends, 26 AWG, gold, 12"		Hirose: H4BBG-10112-R6
	4		Black Flying Lead with socket at both ends, 26 AWG, gold, 12"		Hirose: H4BBG-10112-B6
	1		Blue Flying Lead with socket at both ends, 26 AWG, gold 12"		Hirose: H4BBG-10112-L6
	1	P1	Serial Port	Connector, 3 pin	J.S.T: PAP-03V-S
	3			CONTC SKT CRMP 26-22GA SN	J.S.T: SPHD-001T-P0.5
	2	P3, P4	EtherCAT Shields	Faston, 22~26 AWG	TE: 7-520366-2

16-127915 Document Revision History

Revision	Date	Remarks
00	July, 2 2020	Initial release
01	March, 19 2021	Changed all references from IES to IEL. Changed document name from IES-60-15 to IEL-60-15.
AA	July 23, 2021	Pre-production revision-Changed revision to pre-production naming convention, removed certifications section. Updated graphics on p. 11, added several warnings for overvoltage.
АВ	June 8, 2022	Changed Serial Cable reference to SER-USB-J. Added frame grounds to p. 11 Changed P3 & P4 names to Chassis on p. 12

Tel: 781-828-8090

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany. Note: Specifications subject to change without notice

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-127915 Rev AB

Fax: 781-828-6547 Page 16 of 16