

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

CONTROL MODES

- Indexer, Point-to-Point, PVT
- Camming, Gearing
- Position, Velocity, Torque

COMMAND INTERFACE

- CANopen application protocol over EtherCAT (CoE)
- ASCII and discrete I/O
- Stepper commands
- ±10V Position/Velocity/Torque (2 inputs)
- PWM Velocity/Torque command
- Master encoder (Gearing/Camming)

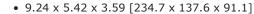
COMMUNICATIONS

- EtherCAT
- RS-232

FEEDBACK

Incremental

- Digital quad A/B encoder
- Analog Sin/Cos encoder
- Panasonic Incremental A Format
- Sanyo Denki Wire-saving Incremental
- Aux. encoder / encoder out
- Absolute
- SSI
- EnDat 2.1 & 2.2
- Absolute A
- Tamagawa Absolute A
- Panasonic Absolute A Format
- Sanyo Denki Absolute A
- BiSS (B&C) Other
- Digital Halls


I/O DIGITAL

- 12 High-speed inputs
- 2 Motor over-temp inputs
- 8 Opto-isolated inputs
- 5 Opto-isolated outputs
- 2 Opto-isolated motor brake outputs

I/O ANALOG

• 2 Reference inputs, 14-bit SAFE TORQUE OFF (STO)

 SIL 3, Category 3, PL d DIMENSIONS: IN [MM]

DESCRIPTION

XE2 sets new levels of performance, connectivity, and flexibility. CANopen application protocol over EtherCAT (CoE) communication provides a widely used cost-effective industrial bus. A wide range of absolute encoders are supported. High resolution A/D converters ensure optimal current loop erformance. Both isolated and high-speed nonisolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed. An integral fan and heatsink enable the drive to deliver the continuous output currents in any mounting orientation. And, the internal regeneration resistor dissipates the energy returned by load decelerations.

Model	Vac	Ic	Ip
XE2-230-20	100~240	10	20
	del number for reso	lver option	20

GENERAL SPECIFICATIONS

MODEL		XE2-230-20	
OUTPUT CURRENT (Each A	xis)		0~40 C Ambient
Peak Current	,	20 (14)	Adc (Arms, sinusoidal)
Peak time		1	S Ada (Arman sinuasidal)
Continuous current		10 (7)	Adc (Arms, sinusoidal)
NPUT POWER Mains voltage, fregu	lency	100~240	Vac, 50/60 Hz
Mains current	ichcy	18	Arms, 1 Ø
		14	Arms, 3 Ø
Inrush current		@ 120 Vac, 40 Apeak @ 240 Vac, 40 ms	All models
Control power	+24 Vdc, ±	no load on encoder +5V outputs), 31 W,	Required for operation
IGITAL CONTROL	10 W (Typ,		
Digital Control Loop	s	Current, velocity, position. 100% dig	nital loop control
Sampling rate (time			ocity & position loops: 4 kHz (250 μs)
Bus voltage comper		Changes in bus or mains voltage do	not affect bandwidth
Minimum load induc		200 µH line-line	
OMMAND INPUTS (NOTE Distributed Control Modes		TIONS ARE PROGRAMMABLE)	
	protocol over EtherCAT	Cyclic synchronous Position-Velocity-	-Torque, Profile Position-Velocity-Torque,
e, itopen application p		Interpolated position, Homing	
Stand-alone mode			
Analog torque, velocit		± 10 Vdc, 14 bit resolution	Dedicated differential analog input
Digital position referer	ice	Pulse/Direction, CW/CCW Quad A/B Encoder	Stepper commands (2 MHz maximum rate) 2 M line/sec, 8 Mcount/sec (after quadrature)
Digital torque & veloci	tv reference	PWM , Polarity	PWM = 0% - 100%, Polarity = 1/0
5	-,	PWM 50%	$PWM = 50\% \pm 50\%$, no polarity signal required
		PWM frequency range	1 kHz minimum, 100 kHz maximum
Indoving		PWM minimum pulse width Up to 32 sequences can be launched	220 ns
Indexing Camming		Up to 10 CAM tables can be stored in	
ASCII		RS-232, 9600~115,200 Baud, 3-wir	
Function Generator		Internal function generator	
Software Programmed		Position-Velocity-Torque control via C	CVM, or ASCII commands
DIGITAL INPUTS	22		
Number [IN1,11]	22 Digital Schmitt trigger	1.5 us BC filter 24 V/dc compatible 15k	Ω programmable pull-up/down to +5 Vdc/ground,
		$- = 1.3 \sim 2.2$ Vdc, VH = $0.7 \sim 1.5$ Vdc	
[IN21, 22]		N11, but with fixed 15 k Ω pull-up to +5 V	/dc
[IN2~5,12~15]		e-ended or differential pairs, 100 ns RC fi	
		ull-up/down per input to $+5$ Vdc/ground,	
[IN6~9,16~19]			: Vin-LO ≤ 200 mVdc, Vin-HI ≥ 200 mVdc, VH = 45 mV ty 2 groups of 4 with common return for each group
[[[[0]]]]			put current ± 3.6 mA @ ± 24 Vdc, typical
[IN10,20]	Motor overtemp signals	on feedback connectors, , Schmitt trigge	er, 24 Vdc compatible
	330 µs RC filter, 4.99k	pullup to +5 Vdc, $Vt+ = 2.5 \sim 3.5 Vdc, V$	T- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc
NALOG INPUTS			
Number	2 Differential ±10 \/de E	k0 input impedance 14 bit recolution	
[AIN1~2]	Differential, ±10 vuc, 5	$k\Omega$ input impedance, 14-bit resolution	
SAFE TORQUE OFF (STO)			
Function			ossible when the STO function is asserted
Standard Safety Integrity Level	SIL 3, Category 3, Perfe	-1, IEC-61508-2, IEC-61800-5-2, ISO-13	3849-1
Inputs		I1+,STO-IN1-, STO-IN2+, STO-IN2-	
Туре	Opto-isolators, 24V con	npatible, Vin-LO \leq 6.0 Vdc or open, Vin-H	HI ≥ 15.0 Vdc,
	STO-IN1: 9.0 mA, STO-		
Response time Reference		c to interruption of energy supplied to mo n and specifications are in the Xenus	
	complete information	in and specifications are in the venus	Plus 2-Axis STO Mallual
RS-232 PORT Signals	PVD TVD Cod in 6-pos	ition, 4-contact RJ-11 style modular conr	actor
Mode		communication port for drive setup and c	
Protocol	Binary and ASCII forma	the second se	
DIGITAL OUTPUTS			
Number	7		
[OUT1~5]			Rated impulse \geq 800 V, series 20 Ω resistor
[OUT6~7]	Motor brake control:	opto-isolated, current-sinking with flybac	ck diode to +24 Vdc, 1 Adc max
THERCAT PORTS	Duel D1 4E seconder 1		
Format Protocol	Dual RJ-45 receptacles,	100BASE-TX ion layer over EtherCAT (CoE)	
TATUS INDICATOR LEDS	, ,	ion ayer over LuterCAT (COL)	
Drive Status		s indicated by color, and blinking or non-	blinking condition
			ink codes to CAN Indicator Specification 303-3
NET Status	RUN/ERR LEDS, SIdius (IIIK COUES to CAN INDICATOR SPECIFICATION 303-3
NET Status	RUN/ERR LEDS, Status (of EtherCAT bus indicated by color and bi	ink codes to CAN Indicator Specification 505-5
	4, two on the feedback		I connector (J12) for the A and B multi-mode ports

GENERAL SPECIFICATIONS

REGENERATION	
Operation	Internal solid-state switch drives external regen resistor (see Ordering Guide for types)
Cut-In Voltage	+HV > 390 Vdc Regen output is on, (optional external) regen resistor is dissipating energy
Drop-Out Voltage	+HV < 380 Vdc Regen output is off, (optional external) regen resistor not dissipating energy
Tolerance	±2 Vdc For either Cut-In or Drop-Out voltage
PROTECTIONS	
HV Overvoltage	+HV > 400 Vdc Drive PWM outputs turn off until +HV is less than overvoltage
HV Undervoltage	+HV < 60 Vdc Drive PWM outputs turn off until +HV is greater than undervoltage
Drive over temperature	IGBT > 80 °C ±3 °C Drive PWM outputs turn off until IGBT temperature is below threshold
Short circuits	Output to output, output to ground, internal PWM bridge faults
I ² T Current limiting	Programmable: continuous current, peak current, peak time
Motor over temperature	Programmable input to disable drive when voltage is above or below a set point 0~5 Vdc Fault occurs if feedback is removed or +5 V is <85% of normal
Feedback power loss	
MECHANICAL & ENVIRONMENTAL	
Size	9.24 x 5.42 x 3.59 [234.7 x 137.6 x 91.1] in[mm]
Weight	4.19 lb [1.90kg]
Ambient temperature Humidity	0 to +40 °C operating, -40 to +85 °C storage 0% to 95%, non-condensing
Contaminants	Pollution degree 2
Vibration	2 g peak, 10~500 Hz (sine), IEC 60068-2-6
Shock	10 g, 10 ms, half-sine pulse, IEC 60068-2-27
Environment	IEC 60068-2
OPTIONS	
XTL-FA-01 Edge Filter	One used for each motor output. A passive R-L-C filter that reduces capacitive coupling of PWM outputs
ATE TA OT Edge Tiller	to adjacent cabling by lengthening the rise/fall times and providing common-mode filtering of the
	PWM outputs. Typically used in systems that have serve drives operating near other cables
	carrying low-amplitude sensor or video signals.
	Further details on the XTL-RA-04 can be found in the Xenus Regeneration Guide on the Copley Controls web-site
	http://www.copleycontrols.com/Motion/pdf/Xenus_regen_guide-03-04.pdf
XTL-RA-04 Regen Resistor	Used when the regenerative energy from a moving load is greater than the absorption
7.12 10 10 1 1 1 0 gen 1 00 000	capacity of the internal regen resistor. 15 Ω , 65 W default continuous power, 400 W max continuous power
	10 kW peak power, 1000 ms peak power time.
	Further details on the XTL-FA-01 can be found in the XTL-FA-01 Edge Filter for Xenus User Guide on the
	Copley Controls web-site: <u>http://www.copleycontrols.com/Motion/pdf/Xenus-Filter.pdf</u>
AGENCY STANDARDS CONFOR	
	MANCE
Standards and Directives Functional Safety	
	C 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)
	Z/EC (Machinery)
ISO 138	(49-1 (Cat 3, PL d)
IEC 618	00-5-2 (SIL3)
	s Plus Dual Axis STO Manual for further details)
Product Safety	
	35/EU (Low Voltage)
IEC 618	
SEMI F47-0706	
EMC	
Directive 2014/3	Functional of (R)
IEC 618	JU-3
Restriction of the Use of	Certain Hazardous Substances (RoHS)
Directive 2011/6	i5/EU (RoHS II)
Approvals	
UL and cUL recognized c	component to:
UL 61800-5-1, 1	
TÜV SÜD Functional Sa	
	C 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)
ISO 13849-1 (Ca	

FEEDBACK: XE2-230-20

copley of controls

FEEDBACK				
Incremental:				
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)			
	5 MHz maximum line frequency (20 M counts/sec)			
	MAX3097 differential line receiver with 121 Ω terminating resistor between complementary inputs			
Analog Incremental Encoder				
Analog Index signal	BW > 300 kHz, 121 Ω terminating resistor between complementary inputs Differential, 121 Ω terminating resistor between complementary inputs, 1 Vpeak-peak zero-crossing detect			
Panasonic Incremental A For				
Sanyo Denki Wire-saving Inc				
Absolute:	SERIAL ENCODERS MAY CONNECT TO THE FEEDBACK CONNECTORS OR THE MULTI-PORT			
	TWO SERIAL ENCODERS ARE THE MAXIMUM ALLOWED			
	TWO SERIAL ENCODERS ON ONE AXIS ARE NOT SUPPORTED			
SSI	Clock (X, /X), Data (S, /S) signals, 4-wire, clock output from XE2, data returned from encoder			
EnDAT	Clock (X, /X), Data (S, /S), Sin/Cos (sin+, sin-, cos+, cos-) signals			
Absolute A, Tamagawa Absol	ute A, Panasonic Absolute A Format, Sanyo Denki Absolute A			
	SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication Position feedback: 13-bit resolution per rev, 16 bit revolution counter (29 bit absolute position data)			
	Status data for encoder operating conditions and errors			
BiSS (B&C)	MA+, MA- (X, X) , SL+, SL- (S, S) signals, 4-wire, clock output from XE2, data returned from encoder			
. ,				
DIGITAL HALLS				
Туре	Digital, single-ended, 120° electrical phase difference between U-V-W signals,			
	Schmitt trigger, 1 µs RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground,			
Transita	$Vt + = 2.5 \sim 3.5 Vdc, VT - = 1.3 \sim 2.2 Vdc, VH = 0.7 \sim 1.5 Vdc$			
Inputs	10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters			
MULTI-MODE ENCODER PORT				
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors between A & /A, B & /B inputs			
	18 M-counts/sec, post-quadrature (4.5 M-lines/sec) Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121 Ω terminating resistors			
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev			
As Emulated Output	from analog Sin/Cos encoders			
	A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers			
As Buffered Output	Digital encoder feedback signals from primary digital encoder are buffered by MAX3032 line driver			
ENCODER POWER SUPPLIES				
Number	4, two on the feedback connectors (J10, J11), two on the control connector (J12)			
	for the A and B multi-mode ports			
Ratings	+5 Vdc @ 500 mA, thermal and overload protected, each output. 2000 mA total for all four outputs)			

FEEDBACK: XE2-230-20-R

RESOLVER	
Туре	Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio
Resolution	14 bits (equivalent to a 4096 line quadrature encoder)
Reference frequency	8.0 kHz
Reference voltage	2.8 Vrms, auto-adjustable by the drive to maximize feedback
Reference maximum current Maximum RPM	
Sin/Cos inputs	10,000+ Differential, 54k ±1% differential impedance, 2.0 Vrms, BW ≥ 300 kHz
, ,	Differential, 54k ±1% differential impedance, 2.0 Virils, BW ≥ 500 kHz
DIGITAL HALLS	
Туре	Digital, single-ended, 120° electrical phase difference between U-V-W signals,
	Schmitt trigger, 1 µs RC filter, 24 Vdc compatible, programmable pull-up/down to +5 Vdc/ground,
Tanuka	$Vt + = 2.5 \sim 3.5 Vdc, VT - = 1.3 \sim 2.2 Vdc, VH = 0.7 \sim 1.5 Vdc$
Inputs	10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT	
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors between A & /A, B & /B inputs 18 M-counts/sec, post-quadrature (4.5 M-lines/sec)
	Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, 121 Ω terminating resistors
	(See above for listing of absolute encoder types. EnDat Sin/Cos signals are not supported)
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from
	resolver, A, /A, B, /B, outputs from MAX3032 differential line driver, X, /X, S, /S outputs from MAC3362 drivers
ENCODER POWER SUPPLIES	
Number	4, two on the feedback connectors (J10, J11), two on the control connector (J12) for the A and B multi-mode ports
Ratings	+5 Vdc @ 500 mA, thermal and overload protected, each output. 2000 mA total for all four outputs)

ETHERCAT COMMUNICATIONS

ETHERCAT CONNECTIONS

copley

controls

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master, or to the OUT port of a device that is 'upstream', between the Xenus Plus and the master. The OUT port connects to 'downstream' nodes. If Xenus Plus is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

Xenus^{PLUS} 2-Axis EtherCAT

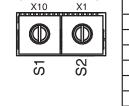
ETHERCAT LEDS (ON RJ-45 CONNECTORS)

	RCAT LEI	JS (Ur	N KJ-45	CONNECTORS)	
L/A	LED ON	Link Yes	Activity No Yes	of the EtherCAT network: Condition Port Open Port Open with activity Port Closed	
RUN	Off	= Init = Pre-0	operational operation		(
	Off Blinking Single Flash	state cha = Ethe = Inva = Loca = PDO	anges in th rCAT comr lid configu Il error, sla or EtherC	chdog timeouts and unsolicited ne XE2 due to local errors. munications are working correctly ration, general configuration error ve has changed EtherCAT state autonomously AT watchdog timeout, on watchdog timeout has occurred	,

OUT J8 IN

J8: EtherCAT PORTS RJ-45 receptacles, 8 position, 4 contact

PIN	SIGNAL
1	TX+
2	TX-
3	RX+
6	RX-


EtherCAT DEVICE ID (STATION ALIAS)

In an EtherCAT network, slaves are automatically assigned consecutive addresses based on their position on the network. But when the device must have a positive identification that is independent of cabling, a Device ID is used. This is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x00-0xFF (0-255 decimal). The chart shows the decimal values of the hex settings of each switch.

- Example 1: Find the switch settings for decimal Device ID 107:
- 1) Find the highest number in the x10 column that is less than 107 and set x10 to the hex value in the same row:

96 < 107 and 112 > 107, so x10 = 96 = Hex 6

- 2) Subtract 96 from the desired Device ID to get the decimal value for the switch x1 and set it to the Hex value in the same row: x1 = (107 - 96) = 11 = Hex B
- 3) Result: X10 = 6, X1 = B, Alias = 0x6B (107)

.

. . . .

- DEVICE ID -

Г

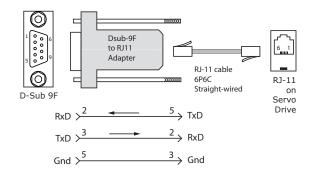
EtherCAT Device	ID	Switch
Decimal values		

Set	x10	x1	Set	x10	x1
Hex	D	ec	Hex	D	ec
0	0	0	8	128	8
1	16	1	9	144	9
2	32	2	А	160	10
3	48	3	В	176	11
4	64	4	С	192	12
5	80	5	D	208	13
6	96	6	E	224	14
7	112	7	F	240	15

INDICATORS: DRIVE STATE

A ti V

A bi-color LED gives the state tiple conditions occur, only the When that condition is cleared	e top-most condit		Axis A
 1) Red/Blinking 2) Red/Solid 3) Green/Double-Blinking 4) Green/Slow-Blinking 5) Green/Fast-Blinking 7) Green/Solid 	 Transient fault the condition STO circuit ac Drive OK but Positive or Ne Drive will only 	 Operation will not resume until drive is Reset. t condition. Drive will resume operation when causing the fault is removed. tive, drive outputs are Safe-Torque-Off NOT-enabled. Will run when enabled. egative limit switch active. / move in direction not inhibited by limit switch. enabled. Will run in response to 	Axis B
Latching Faults		uts or EtherCAT commands.	
Default Short circuit (Internal o Drive over-temperature Motor over-temperature Feedback Error Following Error	:	Optional (programmable) • Over-voltage • Under-voltage • Motor Phasing Error • Command Input Fault • Motor Wiring Disconnected • STO Active • Over Current (I2T Limit)	


COMMUNICATIONS: RS-232 SERIAL

RS-232 COMMUNICATIONS

XE2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the XE2 RS-232 port are through J7, an RJ-11 connector. The XE2 Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the XE2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the XE2. The connections are shown in the diagram below.

J6: RS-232 PORT RJ-11 receptacle, 6 position, 4 contact

PIN	SIGNAL
2	RxD
3,4	Gnd
5	Txd

9	

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an XE2!

ASCII COMMUNICATION PROTOCOL

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate these drives over an RS-232 serial connection. For instance, after basic drive configuration values have been programmed using CME, a control program can use the ASCII Interface to:

- Enable the drive in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter. After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200). ASCII parameter 0x90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:

s r0x90 115200 <enter>

Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.

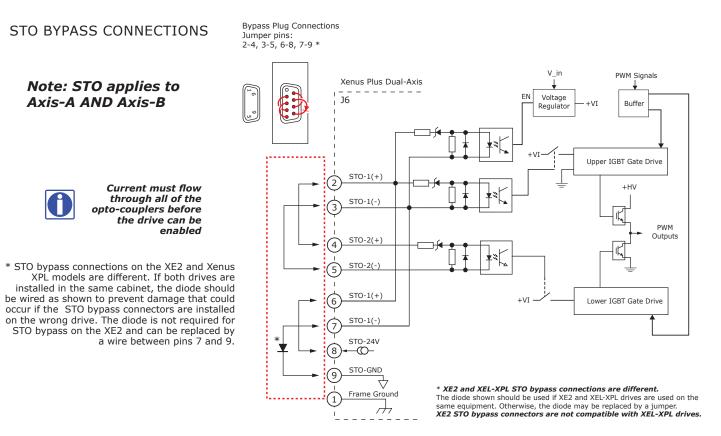
Additional information can be found in the ASCII Programmers Guide on the Copley website: http://www.copleycontrols.com/Motion/pdf/ASCII_ProgrammersGuide.pdf

SAFE TORQUE OFF (STO)

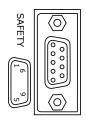
DESCRIPTION

The XE2 provides the Safe Torque Off (STO) function as defined in IEC 61800-5-2. Three opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION


Refer to the Xenus Plus Dual-Axis STO User Manual 16-01344

The information provided in the Xenus Plus Dual-Axis STO User Manual must be


considered for any application using the XE2 drive STO feature. Failure to heed this warning can cause equipment damage, injury, or death.

STO BYPASS (MUTING) In order for the PWM outputs of the drive to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-1 and STO-2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor. This diagram shows connections that will energize all of the opto-couplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.

If not using the STO feature, these connections must be made in order for the drive to be enabled.

STO CONNECTOR

J5 SIGNALS

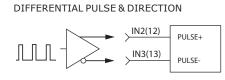
_				
	PIN	SIGNAL	PIN	SIGNAL
	1	Frame Gnd	6	STO-1(+)
	2	STO-1(+)	7	STO-1(-)
	3	STO-1(-)	8	STO-24V
	4	STO-2(+)	9	STO-GND
	5	STO-2(-)		

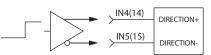
copley **Xenus**^{PLUS} 2-Axis EtherCAT controls

DIGITAL COMMAND INPUTS: IN2, IN3, IN4, IN5, IN12, IN13, IN14, IN15

DIGITAL POSITION

Digital position commands can be in either single-ended or differential format. Single-ended signals should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. Differential inputs have 121Ω line-terminators.

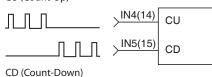

SINGLE-ENDED PULSE & DIRECTION


IN4(14)

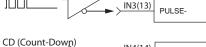
IN5(15)

Pulse

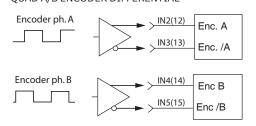
Direction



COMMAND SINGLE-ENDED


Signal	Axis A	Axis B	
Pls, Enc A	J12-10	J12-15	
Dir, Enc B	J12-11	J12-30	
Sgnd	J12-6,16,2	2,31,37,44	
Shld	J12-1		

SINGLE-ENDED CU/CD



DIFFERENTIAL CU/CD CU (Count-Up) IN2(12) PULSE+

IN4(14) DIRECTION+ $\square \parallel \square$ IN5(15) DIRECTION

QUAD A/B ENCODER DIFFERENTIAL

COMMAND DIFFERENTIAL

Signal	Axis A	Axis B
Pls, Enc A	J12-8	J12-13
/Pls, Enc /A	J12-9	J12-14
Dir, Enc B	J12-10	J12-15
/Dir, Enc /B	J12-11	J12-30
Sgnd	J12-6,16,22,31,37,44	
Shld	J12	2-1

Axis A

J12-10

J12-11

Axis A

J12-8

J12-9

J12-10

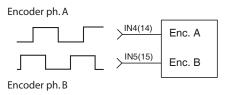
J12-6,16,22,31,37,44

J12-1

Axis B

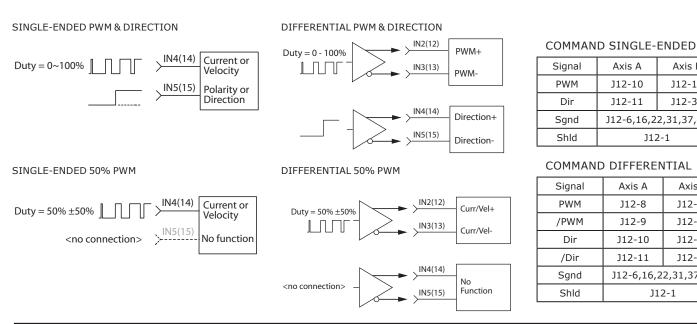
J12-15

J12-30


Axis B

J12-13

J12-14


J12-15

QUAD A/B ENCODER SINGLE-ENDED

DIGITAL TORQUE, VELOCITY

Digital torque or velocity commands can be in either single-ended or differential format. Single-ended signals must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

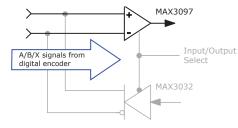
J12-11 J12-30 J12-6,16,22,31,37,44

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01417 Rev 04

Tel: 781-828-8090

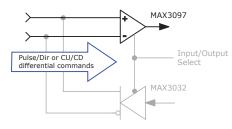
J12-1

copley of controls

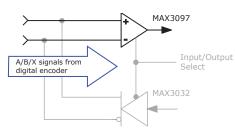


MULTI-MODE ENCODER PORT AS AN INPUT

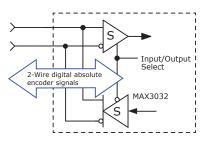
INPUT TYPES

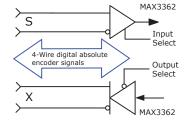

POSITION COMMAND INPUTS: DIFFERENTIAL

- Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input


CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

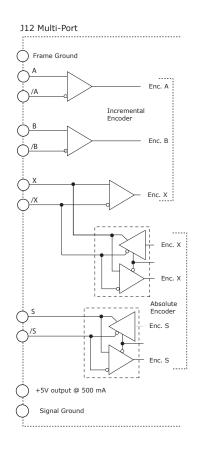
- Current or Velocity & Direction
- Current or Velocity (+) & Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL


- Quad A/B/X incremental encoder
- Quad A/B emulated encoder from Sin/Cos encoder

SECONDARY FEEDBACK: ABSOLUTE

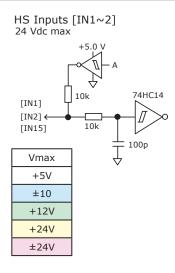
- S channel: Absolute A encoders (2-wire) The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire) The X channel sends the Clock signal to the encoder, which initiates data transmission from the encoder on the S-channel in full-duplex mode



Tel: 781-828-8090

COMMAND INPUT MULTI-PORT

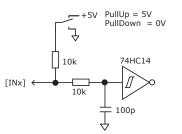
Signal	Axis A	Axis B
Pls, Enc A	J12-36	J12-42
/Pls, Enc /A	J12-21	J12-27
Dir, Enc B	J12-35	J12-41
/Dir, Enc /B	J12-20	J12-26
Enc X	J12-34	J12-40
Enc /X	J12-19	J12-25
Sgnd	J12-6,16,22,31,37,4	
Shld	J12	2-1


EMULATED QUAD A/B/X MULTI-PORT

Signal	Axis A	Axis B	
Enc A	J12-36	J12-42	
Enc /A	J12-21	J12-27	
Enc B	J12-35	J12-41	
Enc /B	J12-20	J12-26	
Enc X	J12-34	J12-40	
Enc /X	J12-19	J12-25	
Sgnd	J12-6,16,22,31,37,44		
Shld	J12-1		

GENERAL PURPOSE INPUTS

coplev

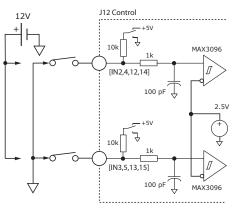


Input	Pin	R1	R2	C1	Vm	Input	Pin	R1	R2	C1	Vm	
*IN1	J12-7	15k	10k	100p	+24	*IN11	J12-12	15k	10k	100p	+24	
*IN2	J12-8					*IN12	J12-13					
*IN3	J12-9	101	11.	100-	. 12	*IN13	J12-14	1.01	11.	100-	. 10	
*IN4	J12-10	10k	1k	100p	+12	*IN14	J12-15	10k	1k	100p	+12	
*IN5	J12-11					*IN15	J12-30					
IN6	J9-2					IN16	J9-7					
IN7	J9-3					IN17	J9-8					
IN8	J9-4	Opto			±24	IN18	J9-9		Opto		±24	
IN9	J9-5	1					IN19	J9-18				
ICOM1	J9-6					ICOM2	J9-17					
IN10	J10-7	4.99k	10k	33n	+24	IN20	J11-7	4.99k	10k	33n	+24	
IN21	J10-24	15k	10k	100p	±24	IN22	J11-24	15k	10k	100p	724	

* PROGRAMMABLE PULL UP/DOWN

The input resistor of these inputs is programmable to pull-up to +5V or pull-down to 0V. Pull-up is the default and works with current-sinking outputs from a controller. Pull-down works with current-sourcing outputs, typically PLC's that drive grounded loads. Six of the inputs have individually settable PU/PD. The other four have PU/PD control for pairs of inputs.

I

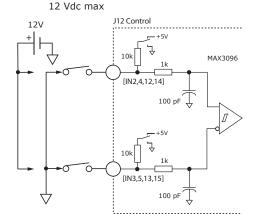


SINGLE-ENDED/DIFFERENTIAL DIGITAL INPUTS [IN2~5,12~15]

These inputs have all the programmable functions of the GP inputs plus these additional functions which can be configured as single-ended (SE) or differential (DIFF):

- PWM 50%, PWM & Direction for Velocity or Current modes
- Pulse/Direction, CU/CD, or A/B Quad encoder inputs for Position or Camming modes

SINGLE-ENDED 12 Vdc max



Input	Pin	PU/PD	Input	Pin	PU/PD
IN1	J12-7	1	IN11	J12-12	5
IN2	J12-8	2	IN12	J12-13	6
IN3	J12-9	3	IN13	J12-14	7
IN4	J12-10	4	IN14	J12-15	8
IN5	J12-11	4	IN15	J12-30	8

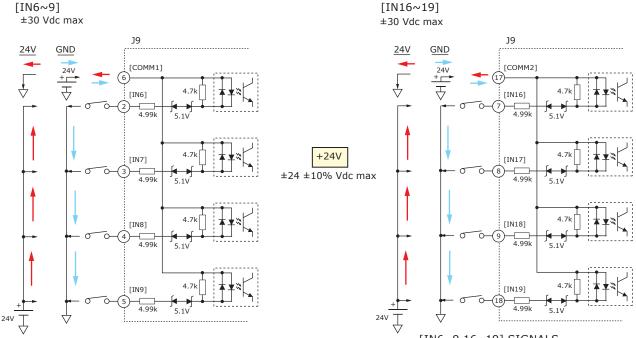
[IN2~5,12~15] SIGNALS

S.E.	Diff		S.E.	Diff	
Input	Input	Pin	Input	Input	Pin
IN2	IN2+	J12-8	IN12	IN12+	J12-13
IN3	IN2-	J12-9	IN13	IN12-	J12-14
IN4	IN4+	J12-10	IN14	IN14+	J12-15
IN5	IN4-	J12-11	IN15	IN14-	J12-30

DIFFERENTIAL

PLC outputs are frequently current-sourcing from 24V for driving grounded loads. PC based digital controllers commonly use NPN or current-sinking outputs. Set the Xenus inputs to pull-down to ground for current-sourcing connections, and to pull-up to 5V for current-sinking connections.

Tel: 781-828-8090



OPTO-ISOLATED INPUTS: IN6, IN7, IN8, IN9, IN16, IN17, IN18, IN19

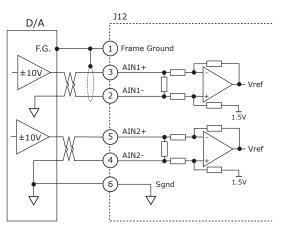
These inputs have all the programmable functions of the GP inputs plus opto-isolation. There are two groups of four inputs, each with a common terminal. Grounding the common terminal configures the inputs to work with current-sourcing outputs from controllers like PLC's. When the common terminal is connected to +24V, the inputs will be activated by current-sinking devices such as NPN transistors or N-channel MOSFETs. The minimum ON threshold of the inputs is ± 15 Vdc.

IN THE GRAPHICS BELOW, "24V" IS FOR CONNECTIONS TO CURRENT-SOURCING OUTPUTS AND "GND" IS FOR CURRENT-SINKING OUTPUTS ON THE CONTROL SYSTEM

These inputs work with current-sourcing OR current-sinking connections. Connect the COMM to controller ground/common for current-sourcing connections and to +24V for current-sinking connections.

The 24V power shown in these connection diagrams does not have to be connected to the logic power supply for the drive, and is commonly provided in the control system to power relays and other devices.

[IN6~9,16~19] SIGNALS Pins Signal Signal Pins IN16 IN6 19-2 19-7 J9-3 IN7 IN17 J9-8 IN8 J9-4 IN18 J9-9 IN9 J9-5 IN19 J9-18 COMM1 J9-6 COMM2 J9-17


ANALOG INPUTS

The analog inputs have a ± 10 Vdc range at 14-bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

[AIN A,B]

[AIN A,B] SIGNALS

Signal	Axis A	Axis B	
AIN(+)	J12-3	J12-5	
AIN(-)	J12-2	J12-4	
Sgnd	J12-6,16,22,31,37,44		
Shield	J12-1		

ISOLATED GENERAL PURPOSE OUTPUTS OUT1~5

- Digital, opto-isolated
- SSR, 2-terminal
- Flyback diode for inductive loads
- 24V Compatible
- Programmable functions

[OUT1~5] SIGNALS

Signal	Pins	Signal	Pins
[OUT1+]	J9-19	[OUT1-]	J9-10
[OUT2+]	J9-20	[OUT2-]	J9-11
[OUT3+]	J9-21	[OUT3-]	J9-12
[OUT4+]	J9-22	[OUT4-]	J9-13
[OUT5+]	J9-23	[OUT5-]	J9-14

J9 300mA SSR [OUTn+] min* max 1 + 36V Vdc [OUTn-] * at 24 Vdc

HI/LO DEFINITIONS: [OUT1~5]

Input	State	Condition	±30Vmax
OUT1~5	HI	Output transistor is ON, current flows	±24V typical
	LO	Output transistor is OFF, no current flows	+24V

30 Vdc max

Zener clamping diodes across outputs allow driving of resistive-inductive (R-L) loads without external flyback diodes.

ISOLATED BRAKE OUTPUTS

- Brake outputs Opto-isolated
- Flyback diodes for inductive loads
- 24V Compatible
- Connection for external 24V power supply
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRK-A,B	HI	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI"

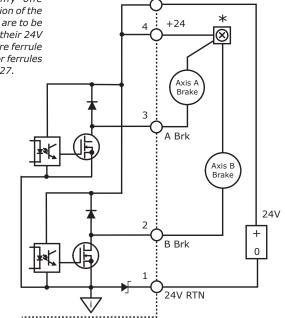
CME I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF

Servo drive is disabled, PWM outputs are off Inactive = Brake is not holding motor shaft (i.e. the *Brake is Inactive*)

> CME I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON Servo drive is enabled, PWM outputs are on Servo drive output current is flowing

Active = Brake is holding motor shaft (i.e. the Brake is Active)

No current flows in coil of brake


Servo drive output current is zero

Current flows in coil of brake

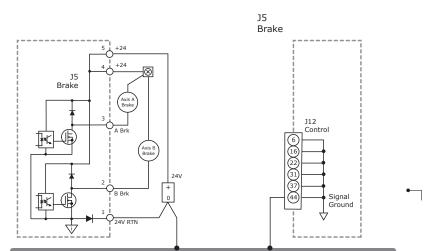
Motor cannot move

Motor can move

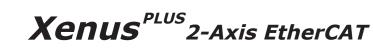
* There should be only one conductor in each position of the J5 connector. If brakes are to be wired directly to J5 for their 24V power, use a double wire ferrule for J5-4. Information for ferrules can be found on page 27.

J5

5


+24

The brake circuits are optically isolated from all drive circuits and frame ground.


CONNECTIONS

Pin	Signal
5	+24V
4	+24V
3	A Brk [OUT6]
2	B Brk [OUT7]
1	24V Return

This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply 0V terminals.

MOTOR CONNECTIONS: ENCODER & RESOLVER

Motor connections are of three types: phase, feedback, and thermal sensor. The phase connections carry the drive output currents that drive the motor to produce motion. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. Feedback can be digital quad A/B encoder, analog Sin/Cos encoder, resolver or digital Halls, depending on the version of the drive.

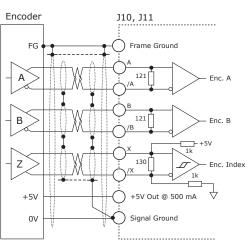
QUAD A/B ENCODER WITH FAULT PROTECTION

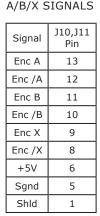
Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

Short-circuits line-line:

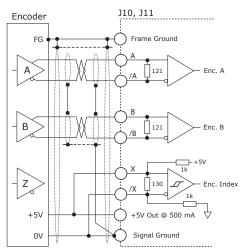
Open-circuit condition:

This produces a near-zero voltage between A & /A which is below the differential fault threshold. The 121Ω terminator resistor will pull the inputs together if either side (or both) is open. This will produce the same fault condition as a short-circuit across the inputs.


The 3097E has protection against high-voltage discharges using the Human Body Model. A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V

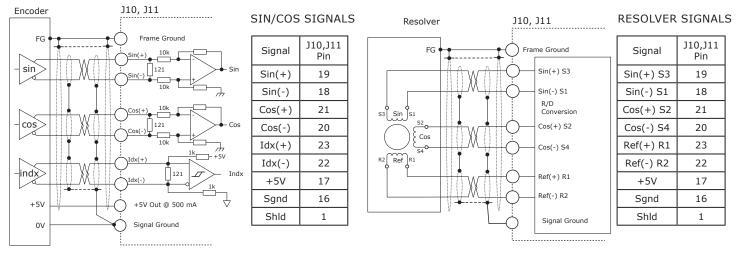

This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV.

Low differential voltage detection: ±15kV ESD protection:


Extended common-mode range:

CONNECTIONS WITH A/B/X ENCODER*

SHIELDED CABLE CONNECTIONS


Double-shielded cable is recommended for resolvers and analog Sin/Cos encoders. The outer shield connects to the motor and drive frames. The inner shield(s) should only connect to the Signal Ground at the drive. The inner shields shown here are for individually shielded twisted-pair cables. If the inner shield is a single one, it connects to Signal Ground at the drive. The inner shield should have no connection at the motor, or the the outer shield. Double-shielding is used less frequently for digital encoders, but the connections are shown here and on following pages for completeness.

ANALOG SIN/COS INCREMENTAL ENCODER**

The Sin/Cos/idx inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs.

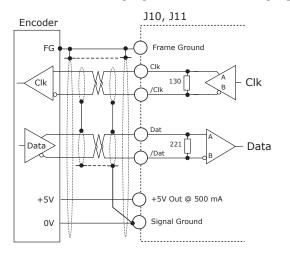
RESOLVER (XE2-230-20-R)

Resolver set up, motor phasing, and other commissioning adjustments are made with CME software. There are no hardware adjustments.

Notes for XE2-230-20-R model:

* These connections are not supported on J10 & J11. The Multi-Port on J12 can be programmed to accept these feedback types.

** Sin/Cos feedback is not supported.



MOTOR CONNECTIONS: ABSOLUTE ENCODERS

SSI ABSOLUTE ENCODER*

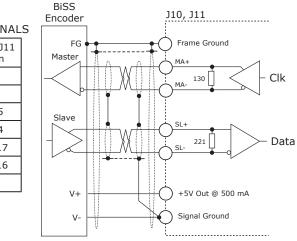
The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XEL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

SSI, BISS SIGNALS J10,J11 Signal Pin Clk 9 /Clk 8 Data 15 /Data 14 +5V6,17 Sgnd 5,16 Shld 1

RS-485.

BISS ABSOLUTE ENCODER*

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.


- Serial Synchronous Data Communication
- Cyclic at high speed 2 unidirectional lines Clock and Data

Line delay compensation for high speed data transfer Request for data generation at slaves Safety capable: CRC, Errors, Warnings

Bus capability incl. actuators

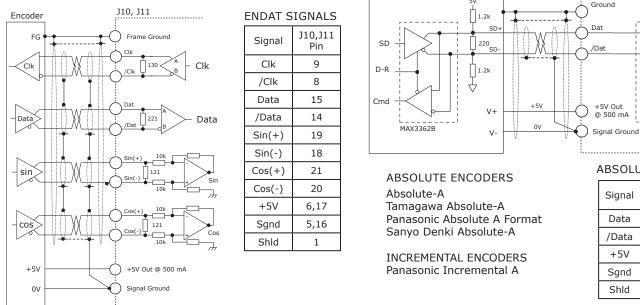
Bidirectional

BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode

ABSOLUTE-A ENCODER & INCREMENTAL A*

Absolute-A

Encode


The interface is a serial, half-duplex type that is electrically the same as

J10, J11

Frame

ENDAT ABSOLUTE ENCODER*

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog Sin/Cos channels from the same encoder. The number of position data bits is programmable as is the use of Sin/Cos channels. Use of Sin/Cos incremental signals is optional in the EnDat specification.

ABSOLUTE-A SIGNALS

Cmd

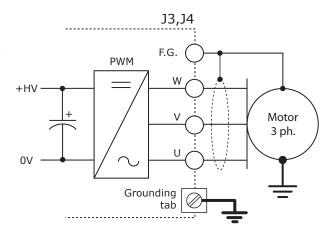
D-R

SD

J10,J11 Pin		
15		
14		
6,17		
5,16		
1		

Notes for XE2-230-20-R model:

* These connections are not supported on J10 & J11. The Multi-Port on J12 can be programmed to accept these feedback types.

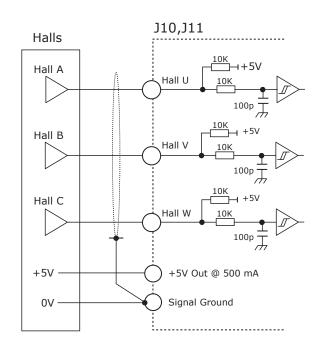


MOTOR CONNECTIONS: MOTOR, HALLS, OVERTEMP

MOTOR PHASE CONNECTIONS

The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J3,J4-1) for best results.

MOTOR SIGNALS		
Signal	J3,J4 Pin	
Mot U	4	
Mot V	3	
Mot W	2	
Shield	1	



DIGITAL HALL SIGNALS

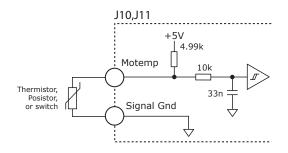
Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the drive has switched to sinusoidal commutation.

HALL SIGNALS

Signal	J10,J11 Pin
Hall U	2
Hall V	3
Hall W	4
+5V	6,17
Sgnd	5,16 25,26

MOTEMP SIGNALS

Signal	Pin
Motemp A	J10-7
Motemp B	J11-7
Sgnd	J10,J11 -5,16,25,26


+30Vmax +24V typical	

+24V

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

MOTOR OVER TEMP INPUT

The 4.99k pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

Tel: 781-828-8090

MULTI-MODE ENCODER PORT

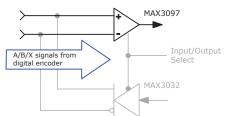
copley

controls

The multi-mode port can operate as primary or secondary feedback from digital quad A/B/X or absolute encoders.

Xenus^{PLUS} 2-Axis EtherCAT

Data & Clk signals from


SSI EnDat

BiSS

Absolute-A

absolute encoder

FEEDBACK FROM DIGITAL QUADRATURE ENCODER When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/ slave configuration.

FULL-DUPLEX ENCODERS

HALF-DUPLEX ENCODERS

Tamagawa Absolute-A Panasonic Absolute-A Format

Sanyo Denki Absolute-A

MAX3097

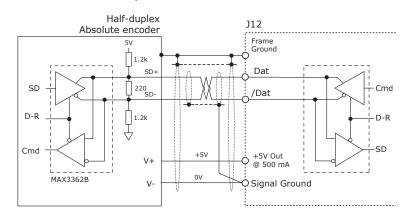
MAX3032

Input/Output

Select

EMULATED QUAD A/B/X MULTI-PORT

Signal	Axis A Pin	Axis B Pin
Enc A	J12-36	J12-42
Enc /A	J12-21	J12-27
Enc B	J12-35	J12-41
Enc /B	J12-20	J12-26
Enc X	J12-34	J12-40
Enc /X	J12-19	J12-25
+5V	32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	


FEEDBACK FROM ABSOLUTE ENCODERS

Digital absolute encoder feedback as motor or load encoder can come from absolute encoders, too. Analog Sin/Cos and index signals are not supported by the multi-port. The graphic to the right shows half-duplex format but both full and half-duplex operation are supported by the multi-port (see below)

ABSOLUTE ENCODER, FULL-DUPLEX MODE

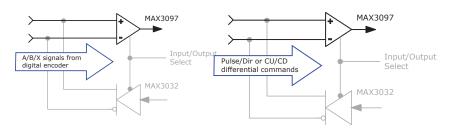
ABSOLUTE ENCODER, HALF-DUPLEX MODE

FULL-DUPLEX SIGNALS

Signal	Axis A Pin	Axis B Pin
Clk, MA+	J12-34	J12-40
/Clk, MA-	J12-19	J12-25
Dat, SL+	J12-33	J12-39
/Dat, SL-	J12-18	J12-24
+5V	J12-32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	

HALF-DUPLEX SIGNALS

Signal	Axis A Pin	Axis B Pin
Dat	J12-33	J12-39
/Dat	J12-18	J12-24
+5V	J12-32,17	J12-38,23
Sgnd	J12-31,16	J12-37,22
Shld	J12-1	



MULTI-MODE ENCODER PORT: COMMAND INPUTS

AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER When operating in position mode the multimode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals

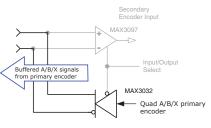
when operating in a master/slave configuration.

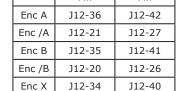
COMMAND INPUTS MULTI-PORT

	Signal		Axis A Pin	Axis B Pin
Enc A	Pulse	CW	J12-36	J12-42
Enc /A	/Pulse	/CW	J12-21	J12-27
Enc B	Dir	CCW	J12-35	J12-41
Enc /B	/Dir	/CCW	J12-20	J12-26
Enc X			J12-34	J12-40
Enc /X			J12-19	J12-25
	+5V		32,17	J12-38,23
	Sgnd		J12-31,16	J12-37,22
F	rame Gn	d	J12	2-1

AS DIGITAL COMMAND INPUTS IN PULSE/ DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT

The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used.


MULTI-MODE ENCODER PORT: FEEDBACK OUTPUTS

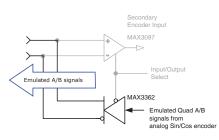

AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER*

When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J12, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor.

AS EMULATED QUAD A/B ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER**

Analog Sin/Cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital guadrature A/B signals that can be used as feedback to an external control system.

Axis A


Pin

Signal

BUFFERED OUTPUTS MULTI-PORT

Axis B

Pin

Α	J12-21	J12-27
3	J12-35	J12-41
в	J12-20	J12-26
$\langle $	J12-34	J12-40
X	J12-19	J12-25
	32,17	J12-38,23
1	J12-31,16	J12-37,22
	J12	2-1
	A B K X	3 J12-35 B J12-20 X J12-34 X J12-19 32,17 H J12-31,16

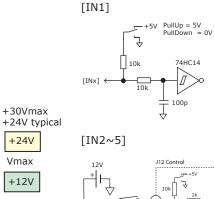
Notes for XE2-230-20-R model:

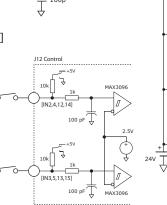
* Buffered outputs from digital encoders on J10 & J11 are not supported. ** Emulated quad A/B outputs are only supported for resolver feedback

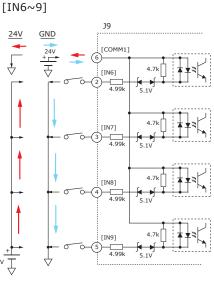
copley controls

Xenus^{PLUS} 2-Axis EtherCAT

AXIS A I/O CONNECTIONS

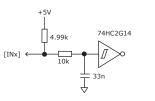

INPUT DATA

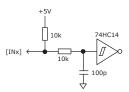

			-	
Input	Pin	R1	R2	C1
IN1	J12-7	15k	10k	100p
IN2	J12-8			
IN3	J12-9	10k	1k	100p
IN4	J12-10	IUK	ΙK	100b
IN5	J12-11			
IN6	J10-2			
IN7	J10-3			
IN8	J10-4		Opto	
IN9	J10-5			
ICOM1	J10-6			
IN10	J11-7	4.99k	10k	33n
IN21	J11-24	15k	10k	100p


HI/LO DEFINITIONS: INPUTS

Input	State	Condition
IN1 10 21	HI	Vin >= 2.5 Vdc
IN1,10,21	LO	Vin <= 1.3 Vdc
IN2~5	HI	Vin > 2.5 Vdc
1112~5	LO	Vin < 2.5 Vdc
IN6~9	HI	Input diode ON
1110~9	LO	Input diode OFF

 $IN6{\sim}9$ are optically isolated and work from positive or negative input voltages. When voltage is applied to an input and current flows through the input diode of the opto-coupler the diode condition is ON. When no voltage is applied to an input and no current flows through the input diode it is OFF.





[IN10]

[IN21]

IN2 J12-8 2 IN3 J12-9 3 IN4 J12-10 4 IN5 J12-11

Input

IN1

INPUTS WITH

PROGRAMMABLE PULL UP/DOWN

Pin

J12-7

4

PU/PD

1

+30Vmax

+24V

Vmax

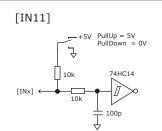
+12V

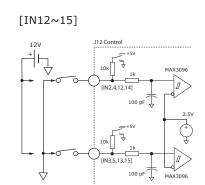
Tel: 781-828-8090

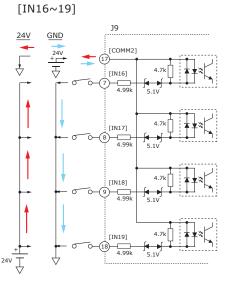
copley controls

Xenus^{PLUS} 2-Axis EtherCAT

AXIS B I/O CONNECTIONS

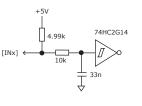

INPUT DATA

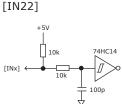

Input	Pin	R1	R2	C1	
IN11	J12-12	15k	10k	100p	
IN12	J12-13				
IN13	J12-14	10k	1k	100-	
IN14	J12-15	TOK	IK	100p	
IN15	J12-30				+30Vmax
IN16	J9-7		~		+24V typical
IN17	J9-8				
IN18	J9-9		Opto		Vmax
IN19	J9-18				+12V
ICOM2	J9-17				
IN20	J11-7	4.99k	10k	33n	
IN22	J11-24	15k	10k	100p	


HI/LO DEFINITIONS: INPUTS

Input	State	Condition	
IN11,20,22	HI	Vin >= 2.5 Vdc	
1111,20,22	LO	Vin <= 1.3 Vdc	
IN12~15	HI	Vin > 2.5 Vdc	
1112~15	LO	Vin < 2.5 Vdc	
IN16~19	HI	Input diode ON	
1010~19	LO	Input diode OFF	

IN16~19 are optically isolated and work from positive or negative input voltages. When voltage is applied to an input and current flows through the input diode of the opto-coupler the diode condition is ON. When no voltage is applied to an input and no current flows through the input diode it is OFF.

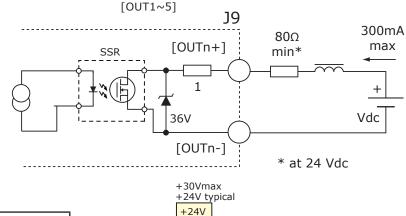




INPUTS WITH PROGRAMMABLE PULL UP/DOWN

Input	Pin	PU/PD
IN11	J12-12	5
IN12	J12-13	6
IN13	J12-14	7
IN14	J12-15	8
IN15	J12v-30	8

[IN20]



OUTPUTS 1~7 CONNECTIONS

OUTPUT CONNECTIONS

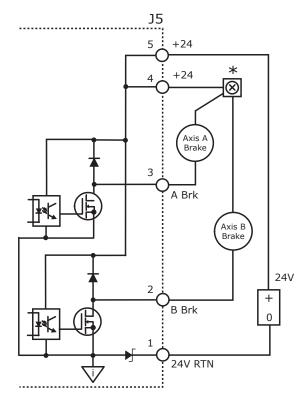
[OUT1~5] SIGNALS

Signal	Pins	Signal	Pins
[OUT1+]	J9-19	[OUT1-]	J9-10
[OUT2+]	J9-20	[OUT2-]	J9-11
[OUT3+]	J9-21	[OUT3-]	J9-12
[OUT4+]	J9-22	[OUT4-]	J9-13
[OUT5+]	J9-23	[OUT5-]	J9-14

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
OUT1~4	HI	Output transistor is ON, current flows
0011~4	LO	Output transistor is OFF, no current flow

[BRK-A,B]

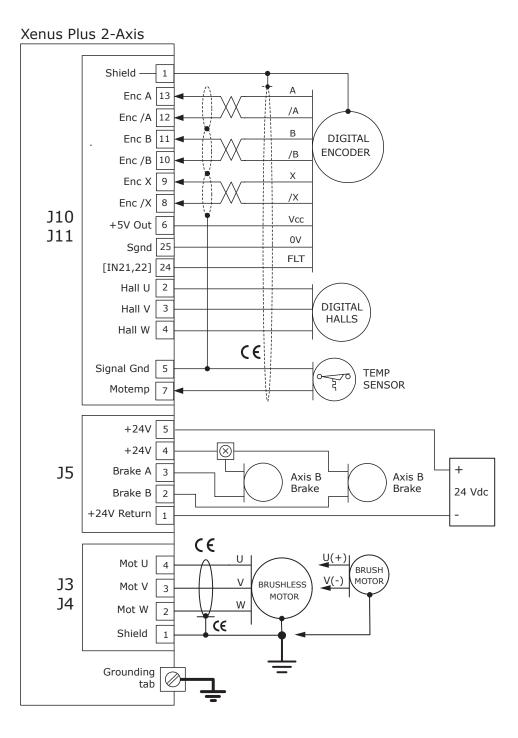

[OUT6~7]

Signal	Pins
Brake A	J5-3
Brake B	J5-2

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
OUT5	HI	Output transistor is ON, current flows
0015	LO	Output transistor is OFF, no current flows
BRK-A,B	HI	Output transistor is OFF Brake is un-powered and locks motor shaft Motor cannot move Brake state is Active
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor shaft Motor is free to move Brake state is NOT-Active

CME Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI" = Brake is holding motor shaft (i.e. the Brake is Active) Active Motor cannot move No current flows in coil of brake CME I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF Servo drive output current is zero Servo drive is disabled, PWM outputs are off Inactive = Brake is not holding motor shaft (i.e. the Brake is Inactive) Motor can move Current flows in coil of brake CME I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON Servo drive is enabled, PWM outputs are on Servo drive output current is flowing

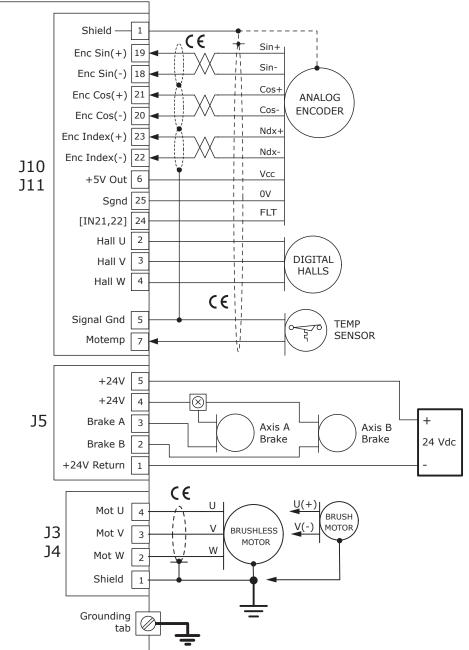

★ There should be only one conductor in each position of the J5 connector. If brakes are to be wired directly to J5 for their 24V power, use a double wire ferrule for J5-4. Information for ferrules can be found on page 30.

MOTOR CONNECTIONS FOR DIGITAL INCREMENTAL ENCODERS: XE2-230-20

For XE2-230-20-R, digital encoder feedback is not supported on J10 & J11. Use the Multi-Port on J12 for this type of feedback.

NOTES:

1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA


2) CE symbols indicate connections required for CE compliance.

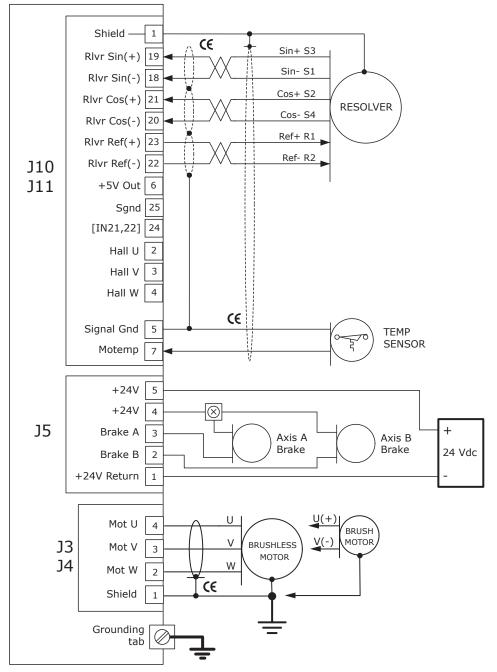
MOTOR CONNECTIONS FOR ANALOG INCREMENTAL ENCODERS: XE2-230-20

For XE2-230-20-R, Sin/Cos/Index encoder feedback is not supported.

NOTES:

1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA

2) CE symbols indicate connections required for CE compliance.



MOTOR CONNECTIONS FOR RESOLVERS: XE2-230-20-R

Digital incremental and absolute encoders may be connected to the Multi-Port on J12.

Xenus Plus 2-Axis

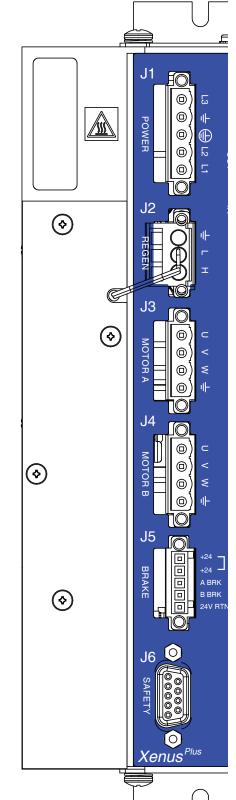
NOTES:

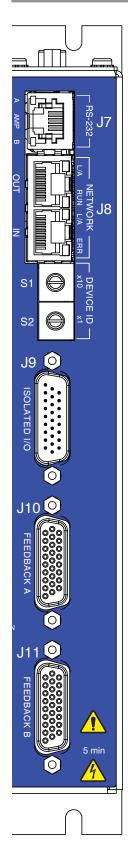
1) +5V Out on J10 & J11 are independent power supplies and each is rated for 500 mA

2) CE symbols indicate connections required for CE compliance.

Xenus^{PLUS} 2-Axis EtherCAT

CONNECTIONS FOR XE2-230-20


WARNING: Hazardous voltages exist on connections to J1, J2, J3 & J4 when power is applied, and for up to 5 minutes after power is removed.


74 84		TION	c
J1 M	AINS CONNEC	IION	S 1
	Signal	Pin	-
	Mains Input L3	5	-
	Frame Ground	4	
	PE Ground	3	
	Mains Input L2	2	
	Mains Input L1	1	
	J2 REGEN RES	ISTO	R
	Signal	Pin	1
	Frame Ground	3	1
	Regen -	2	
	Regen +	1	
J3	&J4 MOTOR OL	ı.	s 'S
	Signal	Pin 4	
	Motor Phase U Motor Phase V	4	-
	Motor Phase W	2	-
	Frame Ground	1	-
		-	_
•		••	•
J5	+24 VDC & B	RAKE	
	Signal	Pin	
	+24V Input	5	
	+24V to Brakes	4	
E			
	A Brake	3	
	A Brake B Brake	3 2	j

J5 STO

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-1(-)		

SIGNAL CONNECTIONS FOR XE2-230-20

J12 CONTROL (ON END PANEL)

	-		-		
PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	Ref1(-)	17	5V Out3	32	5V Out3
3	Ref1(+)	18	A-MultiEnc /S	33	A-MultiEnc S
4	Ref2(-)	19	A-MultiEnc /X	34	A-MultiEnc X
5	Ref2(+)	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1] GP	22	Signal Gnd	37	Signal Gnd
8	[IN2] GP	23	5V Out4	38	5V Out4
9	[IN3] GP	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] GP	25	B-MultiEnc /X	40	B-MultiEnc X
11	[IN5] HS	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN11] HS	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN12] HS	28	n.c.	43	n.c.
14	[IN13] HS	29	n.c.	44	Signal Gnd
15	[IN14] HS	30	[IN15]		

J9 ISOLATED I/O

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN18] GPI	18	[IN19] GPI	26	n.c.
8	[IN17] GPI	17	[IN16~19] COMM	25	n.c.
7	[IN16] GPI	16	n.c.	24	n.c.
6	[IN6~9] COMM	15	n.c.	23	[OUT5+]
5	[IN9] GPI	14	[OUT5-]	22	[OUT4+]
4	[IN8] GPI	13	[OUT4-]	21	[OUT3+]
3	[IN7] GPI	12	[OUT3-]	20	[OUT2+]
2	[IN6] GPI	11	[OUT2-]	19	[OUT1+]
1	Frame Ground	10	[OUT1-]		

J10, J11 FEEDBACK

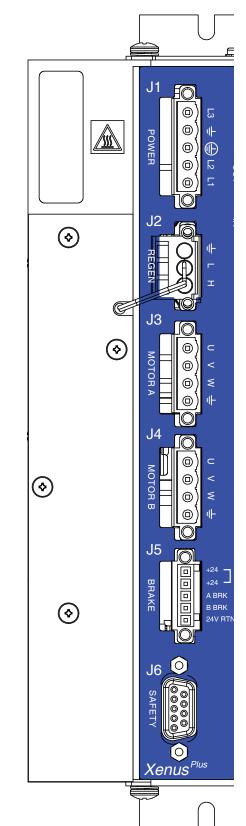
-						
PIN	SIGNAL	PIN	SIGNAL		PIN	SIGNAL
1	Frame Gnd	10	Enc /B][19	Sin1(+)
2	Hall U	11	Enc B][20	Cos1(-)
3	Hall V	12	Enc /A][21	Cos1(+)
4	Hall W	13	Enc A][22	Indx(-)
5	Signal Gnd	14	Enc /S][23	Indx(+)
6	+5V Out1(2)	15	Enc S		24	IN21(22)
7	Motemp IN10(20)	16	Signal Gnd][25	Signal Gnd
8	Enc /X	17	+5V Out1(2)][26	Signal Gnd
9	Enc X	18	Sin1(-)] [

Note: Signals unique to axis A or axis B are shown as "Xxx A(B)"

All other signals are common to both axes A & B

Xenus^{PLUS} 2-Axis EtherCAT

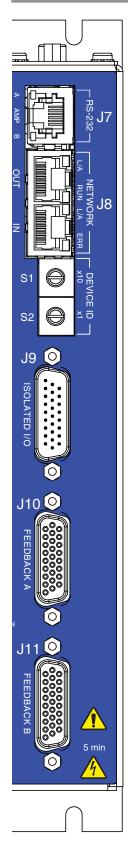
CONNECTIONS FOR XE2-230-20-R


WARNING: Hazardous voltages exist on connections to J1, J2, J3 & J4 when power is applied, and for up to 5 minutes after power is removed.

	/	4						
ISOLA	ATED CIRCUIT	/ \	7					
J1 M	AINS CONNEC	TIONS	5					
[Signal	Pin						
	Mains Input L3	5						
	Frame Ground	4						
	PE Ground	3						
	Mains Input L2	2						
	Mains Input L1	1						
	J2 REGEN RES	ISTO	२					
ĺ	Signal	Pin						
	Frame Ground	3						
	Regen -	2						
	Regen + 1 J3 &J4 MOTOR OUTPUT							
J3	· · ·	1	S					
J3	· · ·	1	s					
J3	&J4 MOTOR OU	1 TPUT	s					
J3	&J4 MOTOR OU Signal	1 TPUT Pin 4 3	S					
J3	&J4 MOTOR OU Signal Motor Phase U	1 TPUT Pin 4	S					
J3	&J4 MOTOR OU Signal Motor Phase U Motor Phase V	1 TPUT Pin 4 3	S					
J3	&J4 MOTOR OU Signal Motor Phase U Motor Phase V Motor Phase W Frame Ground	1 TPUT 4 3 2 1	•					
• • •	&J4 MOTOR OU Signal Motor Phase U Motor Phase V Motor Phase W Frame Ground	1 TPUT 4 3 2 1	•					
• • •	&J4 MOTOR OU Signal Motor Phase U Motor Phase V Motor Phase W Frame Ground	1 Pin 4 3 2 1 RAKE	•					
• • •	&J4 MOTOR OU Signal Motor Phase U Motor Phase V Motor Phase W Frame Ground +24 VDC & B Signal	1 Pin 4 3 2 1 RAKE Pin	•					
• • •	&J4 MOTOR OU Signal Motor Phase U Motor Phase V Motor Phase W Frame Ground +24 VDC & B Signal +24V Input	1 Pin 4 3 2 1 RAKE Pin 5	•					
• • •	&J4 MOTOR OU Signal Motor Phase U Motor Phase V Motor Phase W Frame Ground +24 VDC & B Signal +24V Input +24V to Brakes	1 Pin 4 3 2 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	•					

J5 STO

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-1(-)		



copley of controls

Xenus^{PLUS} 2-Axis EtherCAT

SIGNAL CONNECTIONS FOR XE2-230-R

J12	2 CON	ITROL (ON EN	D PAN	EL)		
	PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
	1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
	2	Ref1(-)	17	5V Out3	32	5V Out3
	3	Ref1(+)	18	A-MultiEnc /S	33	A-MultiEnc S
	4	Ref2(-)	19	A-MultiEnc /X	34	A-MultiEnc X
	5	Ref2(+)	20	A-MultiEnc /B	35	A-MultiEnc B
	6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
	7	[IN1] GP	22	Signal Gnd	37	Signal Gnd
	8	[IN2] GP	23	5V Out4	38	5V Out4
	9	[IN3] GP	24	B-MultiEnc /S	39	B-MultiEnc S
	10	[IN4] GP	25	B-MultiEnc /X	40	B-MultiEnc X
	11	[IN5] HS	26	B-MultiEnc /B	41	B-MultiEnc B
	12	[IN11] HS	27	B-MultiEnc /A	42	B-MultiEnc A
	13	[IN12] HS	28	n.c.	43	n.c.
	14	[IN13] HS	29	n.c.	44	Signal Gnd
	15	[IN14] HS	30	[IN15]		

J9 ISOLATED I/O

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN18] GPI	18	[IN19] GPI	26	n.c.
8	[IN17] GPI	17	[IN16~19] COMM	25	n.c.
7	[IN16] GPI	16	n.c.	24	n.c.
6	[IN6~9] COMM	15	n.c.	23	[OUT5+]
5	[IN9] GPI	14	[OUT5-]	22	[OUT4+]
4	[IN8] GPI	13	[OUT4-]	21	[OUT3+]
3	[IN7] GPI	12	[OUT3-]	20	[OUT2+]
2	[IN6] GPI	11	[OUT2-]	19	[OUT1+]
1	Frame Ground	10	[OUT1-]		

J10, J11 FEEDBACK

N.C. = No Connection

-	0, 511	1 EEB B/ (GI(
	PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
	1	Frame Gnd	10	N.C.	19	Sin1(+) S3
	2	Hall U	11	N.C.	20	Cos1(-) S4
	3	Hall V	12	N.C.	21	Cos1(+) S2
	4	Hall W	13	N.C.	22	Ref(-) R2
	5	Signal Gnd	14	N.C.	23	Ref(+) R1
	6	+5V Out1(2)	15	N.C.	24	IN21(22)
	7	Motemp IN10(20)	16	Signal Gnd	25	Signal Gnd
	8	N.C.	17	+5V Out1(2)	26	Signal Gnd
	9	N.C.	18	Sin1(-) S1		

Note: Signals unique to axis A or axis B are shown as "Xxx A(B)"

All other signals are common to both axes A & B

Tool

WIRING

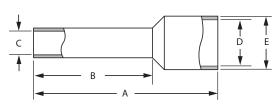
AC POWER, REGEN, AND MOTOR OUTPUTS: J1~J4

Wago MCS-MIDI Classic: 231-305/107-000 (J1) 231-303/107-000 (J2), 231-304/107-000 (J3, J4), female connector; with screw flange; 3-pole; pin spacing 5.08 mm / 0.2 in

Conductor capacity Bare stranded: Insulated ferrule: Stripping length: Operating Tool:

AWG 28~14 [0.08~2.5 mm2] AWG 24~16 [0.25~1.5 mm2] 8~9 mm Wago MCS-MIDI Classic: 231-159 J1

J2


J3, J4

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
14	2.5	Blue	Wago	216-206	15.0 (0.59)	8.0 (0.31)	2.05 (.08)	4.2 (0.17)	4.8 (0.19)	10 (0.39)
16	1.5	Black	Wago	216-204	14.0 (0.59	8.0 (0.31)	1.7 (.07)	3.5 (0.14)	4.0 (0.16)	10 (0.39)
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.055)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.047)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.039)	2.6 (.10)	3.1 (.12)	7.5 (.30)

NOTES

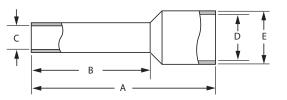
PNUM = Part Number SL = Stripping length Dimensions: mm (in)

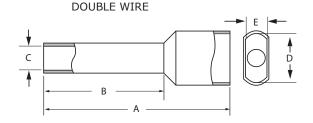
24V & BRAKE: J5

Wago MCS-MINI: 734-105/107-000, female connector; with screw flange, 5-pole; pin spacing 3.5 mm / 0.138 in

Conductor capacity Bare stranded: Insulated ferrule: Stripping length: Operating tool:

AWG 28~16 [0.08~1.5 mm2] AWG 24~16 [0.25~1.5 mm2] 0.24~0.28 in[6~7 mm] Waqo MCS-MINI: 734-231


FERRULE PART NUMBERS: SINGLE WIRE INSULATED


AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.06)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.05)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.04)	2.6 (.10)	3.1 (.12)	7.5 (.30)

FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
2 x 18	2 x 1.0	Red	Altech	2776.0	15.4 (.61)	8.2 [.32]	2.4 (.09)	3.2 (.13)	5.8 (.23)	11.0 (.43)
2 x 18	2 x 1.0	Gray	Altech	2775.0	14.6 (.57)	8.2 (.32)	2.0 (.08)	3.0 (.12)	5.5 (.22)	11.0 (.43)
2 x 20	2 x 0.75	White	Altech	2794.0	14.6 (.57)	8.2 (.32)	1.7 (.07)	3.0 (.12)	5.0 (.20)	11.0 (.43)
2 x 20	2 x 0.75	Gray	TE	966144-2	15.0 (.59)	8.0 (.31)	1.70 (.07)	2.8 (.11)	5.0 (.20)	10 (.39)
2 x 22	2 x 0.50	White	TE	966144-1	15.0 (.59)	8.0 (.31)	1.40 (.06)	2.5 (.10)	4.7 (.19)	10 (.39)

SINGLE WIRE

POWER & GROUNDING

DRIVE POWER SOURCES

An external +24 Vdc power supply is required, and powers an internal DC/ DC converter that supplies all the control voltages for drive operation. Use of an external supply enables EtherCAT communication with the drive when the mains power has been removed.

Power distribution in *XE2* is divided into three sections: +24 Vdc, signal, and high-voltage. Each is isolated from the other and all are isolated from the chassis.

EXTERNAL +24 VDC

The primary side of the DC/DC converter operates directly from the external +24 Vdc supply and is isolated from other drive power sections. The Brake outputs operate in this section and are referenced to the +24 Vdc return (0V). They sink current from an external load connected to the external +24 Vdc power source.

INTERNAL SIGNAL POWER

POWER SECTIONS

The signal power section supplies power for the control circuits as well as logic inputs and outputs. Motor feedback signals such as Halls, encoder, and temperature sensor operate from this power source. All signal circuits are referenced to signal ground. This ground should connect to the control system circuit ground or common so that drive and controller inputs and output voltage levels work properly with each other.

MAINS POWER

Mains power drives the high-voltage section. It is rectified and capacitor-filtered to produce +HV which the PWM stages convert into voltages that drive either three phase brushless or DC brush motors. An internal solid-state switch together with an internal power resistor provides dissipation during regeneration when the mechanical energy of the motors is converted back into electrical energy that must be dissipated before it charges the internal capacitors to an overvoltage condition. All the circuits in this section are "hot", that is, they connect directly to the mains and must be considered high-voltages and a shock hazard requiring proper insulation techniques during installation.

GROUNDING

A grounding system has three primary functions: safety, voltage-reference, and shielding. As a safety measure, the primary ground at J1-3 will carry fault-currents from the mains in the case of an internal failure or short-circuit of electronic components. Wiring to this is typically done with the green conductor with yellow stripe using the same gauge wire as that used for the mains. This wire is a 'bonding' conductor that should connect to an earthed ground point and must not pass through any circuit interrupting devices. *All of the circuits on J1, J2, J3, and J4 are mains-connected and must never be grounded.*

The frame ground terminals at J1-3, J2-3, J3-1, J4-1, J6-1, J9-1, J10-1, J11-1, and J12-1 all connect to the drive chassis and are isolated from all drive internal circuits. Signal grounding references the drive control circuits to those of the control system. These controls circuits typically have their own earth connection at some point. To eliminate ground-loops it is recommended that the drive signal ground be connected to the control system circuit around. When this is done the drive signal voltages will be referenced to the same 0 V level as the circuits in the control system. Small currents flow between controller and drive when inputs and outputs interact. The signal ground is the path for these currents to return to their power sources in both controller and drive.

Shields on cables reduce emissions from the drive for CE compliance and protect internal circuits from interference due to external sources of electrical noise. Because of their smaller wire gauge, these should not be used as part of a safety-ground system. Motor cases can be safety-grounded either at the motor, by earthing the frame, or by grounding conductors in the motor cables that connect to J3-1 & J4-1. These cables should be of the same gauge as the other motor phase cables.

For CE compliance and operator safety, the drive heatplate should be earthed to the equipment frame. Mounting the drive using SEMS screws with external lock washers will make a good connection between the drive case and the equipment frame.

REGENERATION

ENERGY ABSORPTION

180

160

140

100

80

60

40

20

0

(s) 120

Joules (W.

The chart below shows the energy absorption in W·s for a *Xenus Plus XE2* drive operating at some typical mains voltages. When the load mechanical energy is greater than these values an external regen resistor is available as an accessory. The capacitor bank is 2350 uF and the energy absorption is shared with both axes.

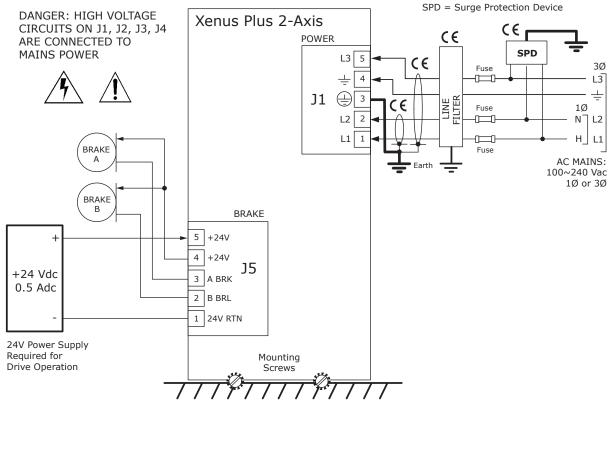
SHIELD ~~~~ REGEN(+) REGEN(J2 FRAME GROUND J3, J4 2350 µl DC BUS(+ J1 2 PW/M V MOTOR MAINS INVERTER IL3 DC BUS(-) w ΡE CASE (SAFETY GROUND) \oplus PWM +24 Vdd STAGE +24 Vdd CONTROL \otimes SHIELD GND POWER ISOLATION BARRIER +24 Signal Gnd 👌 VDC A, B DC/DC Cntrl LOGIC J10, J11 & SIGNAL POWER DC/DC Converter FEEDBACK +24 Vdc GROUND CONTROL POWER & DECODING FFFDBACk SYSTEM +5 Vdc]12 ENABLE [IN1] CONTROL LOGIC SIGNAL GND SHIELD \mathcal{H} CONTROL SIGNA GROUND FRAME GROUND SAFETY GROUND) -

The graphic below shows the different power sections of the Xenus Plus drive and the isolation barriers between them. Only one motor is shown but all

motor PWM drivers are in the mains-connected section.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01417 Rev 04

Tel: 781-828-8090


Fax: 781-828-6547 Page 30 of 36

VAC MAINS

POWER, & BRAKE CONNECTIONS

Keep the chassis grounding connections short for best shielding performance

Notes:

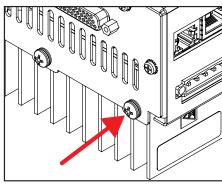
- 1) Items marked with CE are required for standards conformance.
- 2) In the end product installation, a UL RC (Recognized Component) SPD (Surge Protective Device) type 1CA, 2CA, 3CA or a UL Listed (VZCA) SPD type 1, 2, or 3 rated 2500 V, with a minimum SCCR of 5 kA, 240 Vac, and surge voltage monitoring needs to be provided if the over-voltage category of the installation is greater than Category II. When this occurs, the purpose of the SPD is to establish an over-voltage CAT II environment for the drives.
- 3) The line filter used in CE conformance testing was a Filter Concepts 3F15.
- 4) Fuses and/or circuit breakers are optional and can be selected by the user to meet local codes and/or machine construction requirements.
- 5) The internal regen resistor of the XE2 must be unplugged when using an external regen resistor. Only one regen resistor can be connected to the Regen connector J2.

GROUNDING & SHIELDING

Grounding for Safety

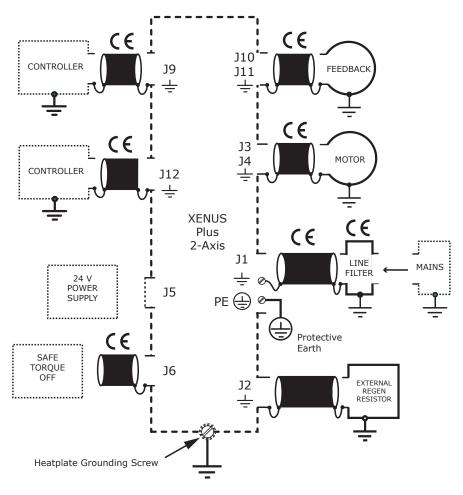
The protective earth (PE) ground at J1-3 (for both single and dual axis drives), is the electrical safety ground and is intended to carry the fault currents from the mains in the case of an internal failure or shortcircuit of electronic components. Wiring to this ground should be done using the same gauge wire as that used for the mains. This wire is a "protective bonding" conductor that should be connected to an earthed ground point and must not pass through any circuit interrupting devices. The PE ground also connects to the drive heatplate (Frame Ground, FG). Connections of the regen and motor cable shields to the FG points (J2-1, J3-1) is done to prevent the motor or regen resistor housing from becoming hazardous in the event of an insulation failure. Protective earth connections for the motor and regen resistor housings are subject to local electrical codes and must be reviewed for compliance with those codes. It is the responsibility of the end user to ensure compliance with local electrical codes and any other applicable standards. It is strongly recommended that motor and regen resistor housings also be connected to protective earth connection points located as close to the motor and regen resistor as possible. In many applications, the machine frame is used as a primary or supplemental protective earth connection point for the motor and regen resistor housings

Grounding and Shielding for CE Compliance


These connections are the means of controlling the emission of radio frequency energy from the drive so that it does not interfere with other electronic equipment. The use of shielded cables to connect the drive to motors and feedback devices is a way of extending the chassis of the drive out to these devices so that the conductors carrying noise generated by the drive are completely enclosed by a conductive shield. The FG ground terminals provide cable shield connection points for the motor, feedback, and regen resistor cables. By connecting the shields for these devices at the drive and at the device, the connection is continuous and provides a return path for radio-frequency energy to the drive.

To further minimize electrical noise it is important to keep the connection between the drive heatplate and earth/equipment frame as short as possible. A Heatplate Grounding Screw is provided for making this connection.

Grounding for Leakage Current Requirements


The connection to the Heatplate Grounding Screw also provides a second protective earthing conductor to address the touch current requirements of IEC 61800-5-1. *Further information on this topic can be found in the Xenus Plus User Guide.*

HEATPLATE GROUNDING SCREW

Keep the chassis grounding connections short for best shielding performance

Notes:

1) Shielded cables required for CE are shown in the diagram above.

2) Line filter required for CE

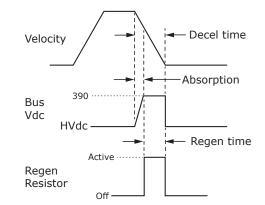
REGENERATION

The drive has has an internal regen resistor which can handle regenerative energy that exceeds the absorption capacity of the internal bus capacitance. The internal regen resistor will be switched on when the energy shown in the table has been absorbed and the bus voltage driven up to 390 Vdc at which point the internal regen resistor will be switched to absorb the kinetic energy of the load.

ABSORPTION				
Ε				
155				
145				
85				
43				
	<i>E</i> 155 145 85			

Absorption is the energy that can be transferred to the internal capacitors during deceleration. This table shows the energy absorption in W·s for a drive operating at some typical mains voltages. The capacitor bank is 2350 uF and the energy absorption is shared with both axes. If the deceleration energy is less than the absorption capacity of the drive, then a regeneration resistor will not be used because the bus voltage will not rise enough to hit the over-voltage level that would disable the PWM outputs.

Terms:


Ε

J

D

- Energy
- Rotary Moment of Inertia
 - Power

Joules, Watt·seconds kg·m² Watts

CALCULATING THE REGEN REPETITION FREQUENCY

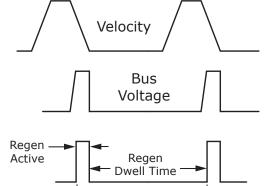
Step 1: Find the energy of motion for a rotating load, for this example let it be 75 Joules:

 $E = J * \frac{\text{RPM}^2}{182} = 75 \text{ J}$ Joules; kg·m², RPM

Step 2: Subtract the absorption at your mains voltage to get the energy that must be dissipated in the regen resistor. Use 240 Vac:

Step 3: Divide the regen energy by the continuous power rating of 20 Watts to get the dwell time that can dissipate the regen energy in the resistor:

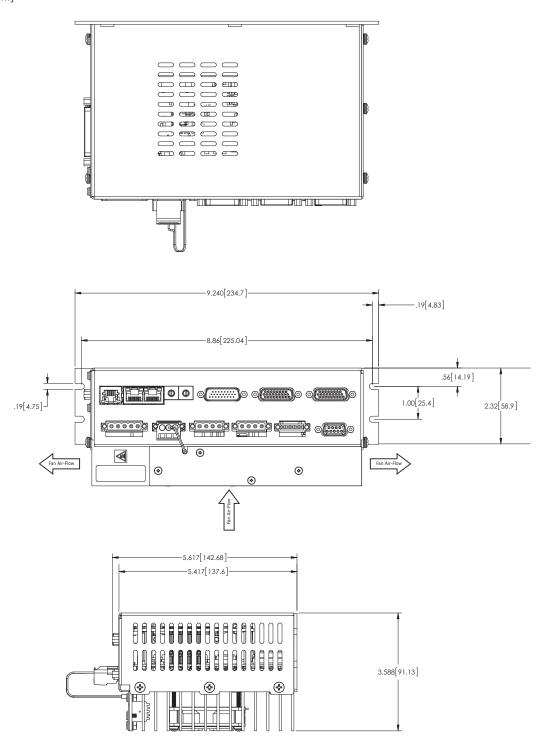
Dwell Time = $\frac{32 \text{ Joules}}{20 \text{ Watts}}$ = 1.6 sec


Seconds; Joules, Watts

Step 4: Find the total regen cycle time by adding the deceleration time to the dwell time:

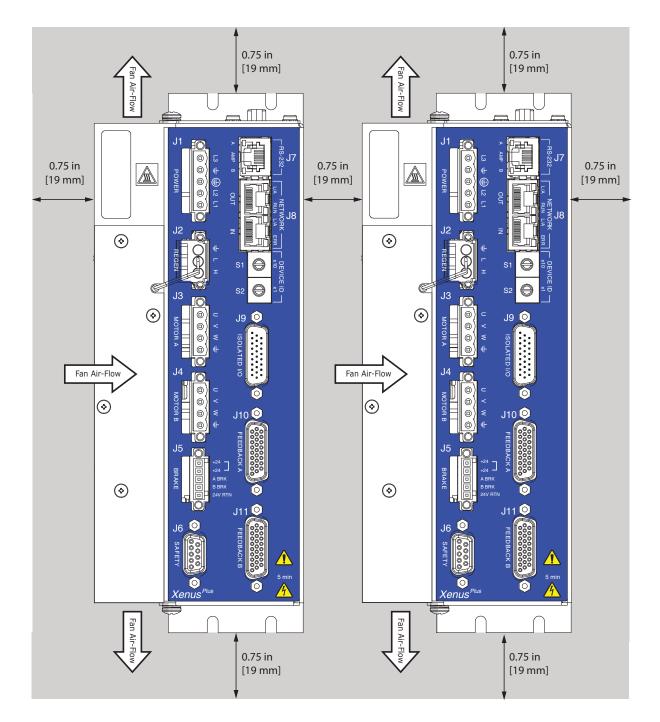
Decel Time = 1.25 sec Dwell Time = 1.60 sec Cycle Time = 2.85 sec

Max Energy	100 W·s (J)
Resistance	18 Ω
Power, continuous	20 W
Power, peak	70 W
Time	2000 ms



_ Regen _ Cycle Time

Units: in [mm]



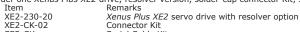
Weight: 4.19 lb [1.90kg]

XE2

The graphic below shows the minimum clearances to observe when mounting the XE2. These provide adequate space around the drive for the intake of air into the heatsink and for exhaust from each end.

copley controls

Xenus^{PLUS} 2-Axis EtherCAT



EtherCA Contormance tested

ORDERING INFORMATION

XE2-230-20	XE2 Servo Drive 10/20 Adc, Encoder feedback
XE2-230-20-R	XE2 Servo Drive 10/20 Adc, Resolver feedback

Example: Order one Xenus Plus XE2 drive, resolver version, solder-cup connector Kit, serial cable kit: Qty

SER-CK

Serial Cable Kit

1 ACCESSORIES

1 1

	Qty	Ref	Name	Description	Manufacturer P/N
	1	J1	AC Pwr	Plug, 5 position, 5.08 mm, female	Wago: 231-305/107-000 (Note 1)
	1	T T		Strain relief, snap-on, 5.08 mm, 5 position, orange	Wago: 232-635
	1	J2	Regen	Plug, 3 position, 5.08 mm, female	Wago: 231-303/107-000 (Note 1)
	1		Regen	Strain relief, snap-on, 5.08 mm, 3 position, orange	Wago: 232-633
	2 12.14	Motor	Plug, 4 position, 5.08 mm, female	Wago: 231-304/107-000 (Note 1)	
	2	33,34	MOLOI	Strain relief, snap-on, 5.08 mm, 4 position, orange	Wago: 232-634
	1	35	Brake	Plug, 5 position, 3.5 mm, female	Wago: 734-105/107-000 (Note 1)
	1	1 12		Strain relief, snap-on, 3.5 mm, 5 position, grey	Wago: 734-605
	1	J5 Too	Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231
XE2-CK Connector Kit	1	J1, J2, J3, J4	Tool	Tool, wire insertion & extraction, 231 series	Wago: 231-159
Nic .	1		Safety	Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4
	9	J6		AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9
	1	Note 2		Metal Backshell, DB-9, RoHS	3M: 3357-9209
	4	1		Jumper, with pins crimped on both ends	Copley: 10-75177-01
	1	J12	2 Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001
	1			Metal Backshell, DB-25, RoHS	3M: 3357-9225
	1	J9	I/O	Connector, high-density DB-26F, 26 position, female, solder cup	Norcomp: 153-003245
	2	J10~11	Feed-	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001
	3	J9~11	back	Metal Backshell, DB-15, RoHS	3M: 3357-9215
SER-CK	1	J7	RS-232 Serial Cable Kit		
XE2-NC-10	1	J8	Network	EtherCAT [®] network cable, 10 ft (3 m)	
XE2-NC-01	1	01	Network	EtherCAT [®] network cable, 1 ft (0.3 m)	
XE2-CV	1	Network	adapter		
XE2-NK	1	Network	kit		

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above

Note 2: Insertion/extraction tool for J6 contacts is AMP/Tyco 91067-2 (not included in XE2-CK)

REGENERATION RESISTOR (OPTIONAL)

XTL-RA-04	1	J2	Regen	Regeneration resistor assembly, 15 Ω
-----------	---	----	-------	---

XTL-FA-01	1	J3~4	Edge filter	
Edge Filter Connector Kit XTL-FK		1	Plug, 4 position, 5.0 mm, female	Wago: 721-104/026-047 (Note 1)
		1	Plug, 5 position, 5.0 mm, male	Wago: 721-605/000-044 (Note 1)
		2	Tool, wire insertion & extraction	Wago: 231-131

16-01417 Document Revision History

Revision	Date	Remarks
00	May 17, 2016	Initial released version
02	March 22, 2017	Update for Agile, ECO-066066, one absolute encoder per axis restriction added
03	February 4, 2019	Updated Agency Standards to reflect the latest IEC standards
04 November 5, 2020		Corrected INTERNAL REGEN RESISTOR resistance unit from $``W'$ to Ω Correction to pin numbering on brake connector J3

Note: Specifications are subject to change without notice

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.