

Control Modes

- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Camming, Gearing
- Indexer

Command Interface

- CANopen
- ASCII and discrete I/O
- Stepper commands
- ±10V position/velocity/torque (2 inputs)
- PWM velocity/torque command
- Master encoder (Gearing/Camming)
- Communications
 - CANopen DS-402
 - RS-232
- Feedback

Incremental

- Incremental Encoders
- Digital quad A/B Analog Sin/Cos Panasonic Incremental A Format
- Aux. quad A/B encoder / encoder out
- Absolute Encoders
- SSI, EnDat, Absolute A, Tamagawa & Panasonic Absolute A Sanyo Denki Absolute A, BiSS (B & C) *Resolver (-R option)*
- Brushless Resolver
- Other
- Digital Halls
- Accessories
 - External regen resistors
 - External edge filter
- Motor Torque Off (MTO)
 - Two active inputs enable power stage
 - One output confirms power stage status

I/O Digital

• 15 inputs, 6 outputs

I/O Analog

- 2, 16-bit inputs
- 1, 12-bit input
- 1, 12-bit output

Dimensions: in [mm]

• 7.92 x 5.51 x 2.31 in (201.2 x 139.9 x 58.7 mm)

Model	Vac	Ic	Ip
XPL-230-18	100 - 240	6	18
XPL-230-36	100 - 240	12	36
XPL-230-40	100 - 240	20	40

Add -R for resolver feedback option

DESCRIPTION

Xenus Plus set new levels of performance, connectivity, and flexibility. CANopen communication provides a widely used cost-effective industrial bus. A wide range of absolute interfaces are built-in including EnDat, Hiperface, and BiSS.

High resolution A/D converters ensure optimal current loop performance. Both isolated and highspeed non-isolated I/O are provided. For safety critical applications, redundant power stage enable inputs can be employed.

DIGITAL SERVO DRIVE FOR BRUSH/BRUSHLESS MOTORS

CANopea

GENERAL SPECIFICATIONS

copley

controls

Test conditions: Wye connected load: 2 mH line-line. Ambient temperature = 25 °C. Power input = 230 Vac, 60 Hz, 1 Ø

		X	PL-230-18	XPL-230-36	XPL-230-40	
UTPUT CURRI Peak Cu Peak tir	urrent		18 (12.7) 1	36 (25.5)	40 (28.3) 1	Adc (Arms, sinusoidal)
	ious current (No	ote 1)	6 (4.24)	12 (8.5)	20 (14.1)	s Adc (Arms, sinusoidal)
PUT POWER						
	voltage, phase, f um Mains Currer		10.1	100~240	20.0	Vac, ±10%, 1Ø or 3Ø, 47~63 Hz Arms
	um Mains currer		10.1 6.4	10.4	15.4	Arms
	c Control powe			0 to +32 Vdc, 500 mA r		Required for operation
IGITAL CONT						
Samplin Bus vol Minimu	Control Loops ng rate (time) ltage compensat im load inductar	Current tion Change nce 200 µH	loop: 16 kHz (6 s in bus or main line-line	on. 100% digital loop co 52.5 µs), Velocity & posi is voltage do not affect	tion loops: 4 kHz (250) µs)
	OUTS (NOTE: DIC Control Modes	GITAL INPUT FU	NCTIONS ARE P	ROGRAMMABLE)		
CANope			Positio	on, Velocity, Torque, Ho	ning, Profile, and Inte	erpolated profile modes
Stand-alone ['] r	mode					
	torque, velocity it impedance	, position refere	ence ±10 \ 74.8 k	/dc, 14 bit resolution		differential analog input Ref(+), Ref(-)
	position referen	се		Direction, CW/CCW		ommands (2 MHz maximum rate)
5			Quad	A/B Encoder	2 M line/se	ec, 8 Mcount/sec (after quadrature)
Digital	torque & velocit	y reference		, Polarity		% - 100%, Polarity = $1/0$
			PWM PWM	50% frequency range		1% ±50%, no polarity signal required imum, 100 kHz maximum
			PWM	minimum pulse width	220 ns	
Indexin				32 sequences can be la		
Cammi ASCII	ng		Up to RS-23	10 CAM tables can be s 32, 9600~115,200 Bauc	, 3-wire, RJ-11 conne	, ctor
IGITAL INPUT	ГS			, stit 110,200 Budd	,	
Numbe	r	15				
[IN1,2,	,15]	Non-isolated So	chmitt trigger, 1	µs RC filter, 24 Vdc max to pull-up to +5 Vdc or	$V_{T} + = 2.5 \sim 3.5 \text{ Vdc},$	$V_{T} = 1.3 \sim 2.2 \text{ Vdc}, V_{H} = 0.7 \sim 1.5 \text{ Vdc}$
[IN3~6	5]	Non-isolated lin Single-ended: [e receiver, 100 IN3,4] or [IN5,6	ns RC filter, +12 Vdc ma 5]: Vin-LO <= 2.3 Vdc,	x, programmable as Vin-HI >= 2.7 Vdc, Vl	
		Differential [IN	13/41 or [IN5/6]	\cdot Vin IO $\sim = 200 \text{ mV/dc}$	1/1 JUL 10 200	
[IN7~1	[4]	Opto-isolated, :	±15~30 Vdc con	npatible, bi-polar, 2 gro	ups of 4 with common	c, Vhysteresis = ±200 mVdc 1 for each group ±3.6 mA @ ±24 Vdc, typical
-	14] TS	Opto-isolated, = Rated impulse =	±15~30 Vdc con	npatible, bi-polar, 2 gro	ups of 4 with common	for each group
- NALOG INPUT Numbe	L4] TS er	Opto-isolated, = Rated impulse = 3	±15~30 Vdc con ≥ 800 V, Vin-LO	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10	ups of 4 with common .0 Vdc, Input current	for each group
- NALOG INPUT Numbe [AIN1~	14] TS rr -2]	Opto-isolated, Rated impulse 3 Differential, ±1	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpt	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit res	ups of 4 with common .0 Vdc, Input current solution	for each group ±3.6 mA @ ±24 Vdc, typical
NALOG INPUT Numbe	14] TS 2]	Opto-isolated, Rated impulse 3 Differential, ±1	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpt	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10	ups of 4 with common .0 Vdc, Input current solution	for each group ±3.6 mA @ ±24 Vdc, typical
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPU Numbe	14] TS rr r 22] UTS rr	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu notor temperatu	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re: ire sensor, 4.99 kΩ pulle	ups of 4 with common .0 Vdc, Input current solution sd-up to +5 Vdc, 12-b	for each group ±3.6 mA @ ±24 Vdc, typical
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPU	14] TS rr v ²] UTS v ²]	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking	± 15 ~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu notor temperatu MOSFET with 1	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}$, Vin-HI ≥ 10 ut impedance, 16-bit re- ire sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th	ups of 4 with common .0 Vdc, Input current solution :d-up to +5 Vdc, 12-b rough diode	for each group ±3.6 mA @ ±24 Vdc, typical it resolution
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPU Numbe	14] TS rr y2] UTS vr ~2]	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4	± 15 ~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu notor temperatu MOSFET with 1	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ire sensor, 4.99 k Ω pulle $k\Omega$ pullup to +5 Vdc th irrnal flyback diode requi	ups of 4 with common .0 Vdc, Input current solution :d-up to +5 Vdc, 12-b rough diode	for each group ±3.6 mA @ ±24 Vdc, typical it resolution
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~	14] TS vr v2] UTS vr v2] v2]	Opto-isolated, Rated impulse Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur MOSFET with 1 0 Vdc max; exter OS buffer, ±32 r Parlingtons with	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}$, Vin-HI ≥ 10 ut impedance, 16-bit re- ire sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th rmal flyback diode requination A 36V Zener flyback diode	aps of 4 with common .0 Vdc, Input current solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6]	14] TS vr v2] UTS vr v2] [v5] [Opto-isolated, Rated impulse Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur MOSFET with 1 0 Vdc max; exter OS buffer, ±32 r Parlingtons with	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th rnal flyback diode requint nA	aps of 4 with common .0 Vdc, Input current solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1^ [OUT3] [OUT4~ [OUT6] NALOG OUTPI	14] TS rr -2] UTS -r -2] -5] UT	Opto-isolated, : Rated impulse : Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D Motor brake com	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur MOSFET with 1 0 Vdc max; exten OS buffer, ±32 r varlingtons with htrol: opto-isolal	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}$, Vin-HI ≥ 10 ut impedance, 16-bit re- irre sensor, 4.99 k Ω pulle $k\Omega$ pullup to +5 Vdc th rmal flyback diode requi nA 36V Zener flyback diode ted, current-sinking with	aps of 4 with common .0 Vdc, Input current solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6] NALOG OUTPI Numbe	14] TS rr -2] UTS -r -2] -5] UT	Opto-isolated, : Rated impulse : Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D Motor brake com	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur MOSFET with 1 0 Vdc max; exter OS buffer, ±32 r Parlingtons with	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}$, Vin-HI ≥ 10 ut impedance, 16-bit re- irre sensor, 4.99 k Ω pulle $k\Omega$ pullup to +5 Vdc th rmal flyback diode requi nA 36V Zener flyback diode ted, current-sinking with	aps of 4 with common .0 Vdc, Input current solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6] NALOG OUTPI Numbe	IA ITS IF ICODER PORT IA IA IA IA IA IA IA IA IA IA	Opto-isolated, Rated impulse 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur MOSFET with 1 0 Vdc max; extence OS buffer, ±32 r varlingtons with ntrol: opto-isolation e-ended, 12-bit cal quadrature ender ender the second	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}$, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th rnal flyback diode requint A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X,	ups of 4 with common .0 Vdc, Input current solution ed-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max h flyback diode to +24	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads # Vdc, 1 Adc max
NALOG INPUT Numbe [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu	IA IS VT V2] UTS v2] VT v2] UT v7, Type SNCODER PORT ut	Opto-isolated, Rated impulse 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +44 High-speed CM Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 10 Vdc max; exter 0 vdc max; ext	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- tre sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th irrnal flyback diode requination A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec)	yps of 4 with common <u>O Vdc, Input current</u> solution ed-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max n flyback diode to +24 /X), 121 Ω terminatin	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads £ Vdc, 1 Adc max g resistors
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTP(Numbe [OUT1~ [OUT4~ [OUT6] NALOG OUTP[Numbe ULTI-MODE E	I4] TS v2] UTS v2] UT v2] UT UT UT UT INCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM. Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature end	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 1 MOSFET with 1 0 Vdc max; extended 0 Vdc max; extended 0 Vdc max; extended 0 Vdc max; extended 0 Vdc max; extended 1 0 0 Vdc max; extended 1 0 Vdc max;	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}, \text{ Vin-HI} \geq 10$ ut impedance, 16-bit re- ire sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th irrnal flyback diode requin A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable reso	aps of 4 with common .0 Vdc, Input current solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive s, 20 mA max n flyback diode to +24 /X), 121 Ω terminatin plution to 4096 lines (for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev
NALOG INPUT Numbe [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu	14] TS rr -2] UTS -7] UT -5] UT rr, Type ENCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4! High-speed CM Opto-isolated E Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc from analog sin	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu- notor temperatu MOSFET with 1 0 Vdc max; exter OS buffer, ±32 r varlingtons with htrol: opto-isolat e-ended, 12-bit c, post-quadrature en- tic, post-quadrature en- tic, post-quadrature en- tic, post-quadrature en- tic, post-quadrature en- tic, post-quadrature en- tic, post-quadrature en- tic) opto-isolat	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}, \text{ Vin-HI} \geq 10$ ut impedance, 16-bit re- ire sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th irrnal flyback diode requin A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable reso	aps of 4 with common .0 Vdc, Input current solution ed-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max n flyback diode to +24 /X), 121 Ω terminatin plution to 4096 lines (inals from digital quad	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads £ Vdc, 1 Adc max g resistors
NALOG INPUT Numbe [AIN1~ [AIN3] DIGITAL OUTPU Numbe [OUT1^ [OUT4~ [OUT6] NALOG OUTPI Numbe IULTI-MODE E As Inpu As Outp	I4] TS rr ·2] UTS rr ·2] UT ·5] UT rr, Type SNCODER PORT ut put	Opto-isolated, Rated impulse Differential, ±1 Single-ended, r Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D Motor brake con <u>1, ±5 Vdc singl</u> Secondary digit 18 M-counts/se Quadrature enc from analog sin A, /A, B, /B, X,	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 1 MOSFET with 1 0 Vdc max; extence OS buffer, ±32 r 0 varlingtons with ntrol: opto-isolat e-ended, 12-bit cal quadrature ender c, post-quadrature ender c, post-quadrature ender (oder emulation v/cos encoders o /X, from MAX30	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}, \text{ Vin-HI} \geq 10$ ut impedance, 16-bit re- ure sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th rnal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable ress r resolvers. Buffered sig 32 differential line drive	aps of 4 with common <u>O Vdc, Input current</u> solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max h flyback diode to +24 /X), 121 Ω terminatin plution to 4096 lines (inals from digital quac	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev
NALOG INPUT Numbe [AIN3] IGITAL OUTPI Numbe [OUT1^ [OUT4^ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outp S-232 PORT Signals	I4] IS vr v2] UTS v2] UT v5] UT vr, Type SNCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D Motor brake coor 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature end from analog sin A, /A, B, /B, X, RxD, TxD, Gnd	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 1 MOSFET with 1 0 Vdc max; extence OS buffer, ±32 r 0 varlingtons with ntrol: opto-isolation e-ended, 12-bit cal quadrature end c, post-quadrature oder emulation v/cos encoders of /X, from MAX3C in 6-position, 4-	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th irrnal flyback diode requination A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable res- r resolvers. Buffered signation 32 differential line driver contact RJ-11 style mo	aps of 4 with common <u>0 Vdc, Input current</u> solution ed-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max <u>n flyback diode to +24</u> (X), 121 Ω terminatin plution to 4096 lines (inals from digital quac er dular connector	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPU Numbe [OUT1^ [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outp	I4] TS yr y2] UTS yr y2] UT yr, Type ENCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4H High-speed CM. Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc for analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu- motor temperatu 10 Vdc max; exter 0 Vdc max; e	npatible, bi-polar, 2 gro $\leq 6.0 \text{ Vdc}, \text{ Vin-HI} \geq 10$ ut impedance, 16-bit re- ure sensor, 4.99 k Ω pulle k Ω pullup to +5 Vdc th rnal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable ress r resolvers. Buffered sig 32 differential line drive	aps of 4 with common <u>0 Vdc, Input current</u> solution ed-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max <u>n flyback diode to +24</u> (X), 121 Ω terminatin plution to 4096 lines (inals from digital quac er dular connector	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outpi S-232 PORT Signals Mode Protoco	I4] TS yr y2] UTS yr y2] UT yr, Type ENCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +4 High-speed CM Opto-isolated D Motor brake coor 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature end from analog sin A, /A, B, /B, X, RxD, TxD, Gnd	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu- motor temperatu 10 Vdc max; exter 0 Vdc max; e	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th irrnal flyback diode requination A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable res- r resolvers. Buffered signation 32 differential line driver contact RJ-11 style mo	aps of 4 with common <u>0 Vdc, Input current</u> solution ed-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max <u>n flyback diode to +24</u> (X), 121 Ω terminatin plution to 4096 lines (inals from digital quac er dular connector	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPU Numbe [OUT1~ [OUT4~ [OUT6] NALOG OUTPI NALOG OUTPI NUMbe ULTI-MODE E As Inpu As Outp S-232 PORT Signals Mode Protocco	I4] IS P P P P P P P P P P P P P	Opto-isolated, Rated impulse 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +44 High-speed CM Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc from analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT Binary and ASC CANH, CANL, C	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 1 MOSFET with 1 0 Vdc max; extence OS buffer, ±32 r 1 or 2 or	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th rnal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable ress r resolvers. Buffered sig 032 differential line drive contact RJ-11 style mo- nication port for drive sec osition dual RJ-45 style	apps of 4 with common <u>O Vdc, Input current</u> solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive as, 20 mA max <u>n flyback diode to +24</u> (X), 121 Ω terminatin plution to 4096 lines (nals from digital quac er dular connector tup and control, 9,600 modular connector, wi	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outp S-232 PORT Signals Mode Protoco	I4] IS VTS v2] UTS v2] UT v5] UT vr, Type NCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +41 High-speed CM Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc from analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT Binary and ASC CANH, CANL, C CANH, CANL, C	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 10 Vdc max; extence 0 Vdc max; exten	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th rmal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable res- r resolvers. Buffered sig 32 differential line drive contact RJ-11 style mo- nication port for drive sec spition dual RJ-45 style gh-speed connections c	apps of 4 with common <u>O Vdc, Input current</u> solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive as, 20 mA max <u>n flyback diode to +24</u> (X), 121 Ω terminatin plution to 4096 lines (nals from digital quac er dular connector tup and control, 9,600 modular connector, wi	for each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder 0 to 115,200 baud
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outpi S-232 PORT Signals Mode Protoco AN PORT Signals Format Data	I4] IS v2] UTS v2] UT v7] UT v7, Type ENCODER PORT ut put	Opto-isolated, Rated impulse 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +44 High-speed CM. Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature end from analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT Binary and ASC CANH, CANL, C CANH, CANL, C CANH, CANL, C CANH, CANL, C	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 10 Vdc max; extence 0 Vdc max; exten	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ire sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th irmal flyback diode requind A 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable res- r resolution incoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable res- r resolution the programmable res- contact RJ-11 style mo- nication port for drive sec- position dual RJ-45 style gh-speed connections co 12	apps of 4 with common <u>O Vdc, Input current</u> solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max a flyback diode to +24 (X), 121 Ω terminatin plution to 4096 lines (mals from digital quac er dular connector tup and control, 9,600 modular connector, wi pmpliant	it resolution it resolution it resolution e loads Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder 0 to 115,200 baud red as per CAN Cia DR-303-1, V1.1
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outp S-232 PORT Signals Mode Protoco AN PORT Signals Format Data	I4] IS v2] UTS v2] UT v7] UT v7, Type ENCODER PORT ut put	Opto-isolated, : Rated impulse : 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +44 High-speed CM. Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc from analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT Binary and ASC CANH, CANL, C CANH, C CANH, C CANH, C CANH, C CANH, C CANH, C CANH, C CANH, C CANH, C C CANH, C C C C C C C C C C C C C C	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpu- motor temperatu 1 MOSFET with 1 0 Vdc max; exter 0 Vdc max; exter 10 Vdc max; exter 0 Vdc max; exter 10 Vdc m	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th rmal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable res- r resolvers. Buffered sig 32 differential line drive contact RJ-11 style mo- nication port for drive sec spition dual RJ-45 style gh-speed connections c	aps of 4 with common <u>0 Vdc, Input current</u> solution <u>id-up to +5 Vdc, 12-b</u> rough diode red if driving inductive es, 20 mA max <u>n flyback diode to +24</u> (X), 121 Ω terminatin plution to 4096 lines (nals from digital quac er dular connector tup and control, 9,600 modular connector, wi ompliant al Node-ID bits availa	if or each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder 0 to 115,200 baud red as per CAN Cia DR-303-1, V1.1 ble as
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT4~ [OUT4~ [OUT6] NALOG OUTPI Numbe IULTI-MODE E As Inpu As Outp S-232 PORT Signals Mode Protocco AN PORT Signals Format Data Node-III	A4] TS P 22] UTS P 2] UT P UT P S CODER PORT UT UT UT D S D S S D S S S S S S S S S S S S S	Opto-isolated, Rated impulse Bated impulse Differential, ±1 Single-ended, r Current-sinking 1 Adc max, +44 High-speed CM Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc from analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT Binary and ASC CANH, CANL, C CANH, CANL, C C CANH, CANL, C C CANH, CANL, C C CANH, CANL, C C C C C C C C C C C C C C C C C C C	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 1 MOSFET with 1 0 Vdc max; extences 0 Vdc m	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th rnal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable ress r resolvers. Buffered sig 032 differential line drive contact RJ-11 style mo- nication port for drive sec position dual RJ-45 style gh-speed connections c 12 nt panel with 3 addition to flash memory (7-bit	aps of 4 with common <u>O Vdc, Input current</u> solution ad-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max n flyback diode to +24 /X), 121 Ω terminatin plution to 4096 lines (nals from digital quac er dular connector tup and control, 9,600 modular connector, wi pmpliant al Node-ID bits availa addressing, 127 node	if or each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder 0 to 115,200 baud red as per CAN Cia DR-303-1, V1.1 ble as as per CAN network
NALOG INPUT Numbe [AIN1~ [AIN3] IGITAL OUTPI Numbe [OUT1~ [OUT3] [OUT4~ [OUT6] NALOG OUTPI Numbe ULTI-MODE E As Inpu As Outpi S-232 PORT Signals Mode Protoco AN PORT Signals Formal Data Node-II	ATOR LEDS Status	Opto-isolated, Rated impulse 3 Differential, ±1 Single-ended, r 6 Current-sinking 1 Adc max, +44 High-speed CM Opto-isolated D Motor brake con 1, ±5 Vdc singl Secondary digit 18 M-counts/se Quadrature enc from analog sin A, /A, B, /B, X, RxD, TxD, Gnd Full-duplex, DT Binary and ASC CANH, CANL, C CANH, CANL, C Bicolor LED, dri	±15~30 Vdc cor ≥ 800 V, Vin-LO 0 Vdc, 5 kΩ inpunotor temperatur 1 MOSFET with 1 0 Vdc max; extended O Vdc max; extended OS buffer, ±32 r varlingtons with ntrol: opto-isolation e-ended, 12-bit cal quadrature ended, 12-bit cal quadrature ended coder emulation v/cos encoders of /X, from MAX3C in 6-position, 4- E serial communication in 6-position, 4- E serial communication E serial communication AN_GND in 8-position from e Profile DSP-40 ary switch on from r programmable ve status indication	npatible, bi-polar, 2 gro ≤ 6.0 Vdc, Vin-HI ≥ 10 ut impedance, 16-bit re- ure sensor, 4.99 kΩ pulle kΩ pullup to +5 Vdc th rnal flyback diode requina 36V Zener flyback diode ted, current-sinking with resolution ncoder (A, /A, B, /B, X, ure (4.5 M-lines/sec) with programmable ress r resolvers. Buffered sig 322 differential line drive contact RJ-11 style mo- nication port for drive sec sition dual RJ-45 style gh-speed connections co 12 nt panel with 3 additior e to flash memory (7-bit ted by color, and blinkin	aps of 4 with common <u>O Vdc, Input current</u> solution d-up to +5 Vdc, 12-b rough diode red if driving inductive es, 20 mA max a flyback diode to +24 (X), 121 Ω terminatin plution to 4096 lines (mals from digital quac er dular connector tup and control, 9,600 modular connector, wi ompliant al Node-ID bits availa addressing, 127 node g or non-blinking conc	if or each group ±3.6 mA @ ±24 Vdc, typical it resolution e loads 4 Vdc, 1 Adc max g resistors 65,536 counts) per rev 1 A/B/X primary encoder 0 to 115,200 baud red as per CAN Cia DR-303-1, V1.1 ble as as per CAN network

3. The actual mains current is dependent on the mains voltage, number of phases, and motor load and operating conditions. The Maximum Mains Currents shown above occur when the drive is operating from the maximum input voltage and is producing the rated continuous output current at the maximum output voltage.

5V OUTPUT	Two independent 5 \	/dc @ 400 mA outputs, thermal and short-circuit protected
REGENERATION		- , ,
Operation	Internal solid-state s	switch drives external regen resistor (see Ordering Guide for types)
Cut-In Voltage	+HV > 390 Vdc	Regen output is on, (optional external) regen resistor is dissipating energy
Drop-Out Voltage	+HV < 380 Vdc	Regen output is off, (optional external) regen resistor not dissipating energy
Tolerance	±2 Vdc	For either Cut-In or Drop-Out voltage
PROTECTIONS		
HV Overvoltage	+HV > 400 Vdc	Drive PWM outputs turn off until +HV is less than overvoltage
HV Undervoltage Drive over temperature	+HV < 60 Vdc IGBT > 80 °C ±3 °C	Drive PWM outputs turn off until +HV is greater than undervoltage Drive PWM outputs turn off until IGBT temperature is below threshold
Short circuits		itput to ground, internal PWM bridge faults
I ² T Current limiting		inuous current, peak current, peak time
Motor over temperature		to disable drive when voltage is above or below a set point $0~5$ Vdc
Feedback power loss	Fault occurs if feedb	ack is removed or +5 V is <85% of normal
MECHANICAL & ENVIRONMENTAL		
Size		n (201.2 x 139.9 x 58.7 mm)
Weight		drive without heatsink
		XPL-HS heatsink, 1.86 lb (0.84 kg) for XPL-HL heatsink
Ambient temperature		ng, -40 to +85 °C storage
Humidity Contaminants	0% to 95%, non-cor Pollution degree 2	luensing
Vibration		z (sine), IEC60068-2-6
Shock		ne pulse, IEC60068-2-27
Environment	IEC68-2: 1990	- F
Cooling	Heat sink and/or for	ced air cooling required for continuous power output
AGENCY STANDARDS CONFOR	MANCE	
In accordance with EC Direct		iractiva)
	, , , , ,	
EN 55011: 2009/A1:201		/A1:2010 ntific, and Medical (ISM) Radio Frequency Equipment –
		C Disturbance Characteristics – Limits and Methods of Measurement

Electromagnetic Disturbance Characteristics – Limits and Methods of Measurement Group 1, Class A EN 61000-6-1: 2007 Electromagnetic Compatibility (EMC) – Part 6-1: Generic Standards – Immunity for residential, Commercial and Light-industrial Environments In accordance with EC Directive 2014/35/EU (Low Voltage Directive) IEC 61010-1:2010 Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use Underwriters Laboratory Standards UL 61010-1, 3rd Ed.: 2012-05 UL File Number E168959

FEEDBACK SPECIFICATIONS

DIGITAL QUAD A/B ENCODER	
Type	Quadrature, differential line driver outputs
Signals	A, /A, B, /B, (X, /X, index signals optional)
-	RS-422/RS-485 line receivers with fault detection for open/shorted inputs, or low signal amplitude
Frequency	5 MHz line frequency, 20 MHz quadrature count frequency
ANALOG ENCODER	
Туре	Sin/cos/index, differential line driver outputs, 0.5 Vpeak-peak (1.0 Vpeak-peak differential)
	centered about 2.5 Vdc typical. Common-mode voltage 0.25 to 3.75 Vdc
Signals	Sin(+), sin(-), cos(+), cos(-), index(+), index(-)
Frequency	230kHz maximum line (cycle) frequency
Interpolation	10 bits/cycle (1024 counts/cycle)
DIGITAL HALLS	
Туре	Digital, single-ended, 120° electrical phase difference
Signals	U, V, W
Inputs	10 k Ω pullups to +5 Vdc, 1 μ s RC filter to Schmitt trigger inverters
MULTI-MODE ENCODER PORT	
As Input	Secondary digital quadrature encoder (A, /A, B, /B, X, /X), 121 Ω terminating resistors
	18 M-counts/sec, post-quadrature (4.5 M-lines/sec)
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev
	from analog sin/cos encoders or resolvers. A, /A, B, /B, X, /X, from MAX3032 differential line driver
As Buffered Output	Digital encoder feedback signals from primary digital encoder are buffered by MAX3032 line driver
I	
RESOLVER (-R OPTION)	Bruchless single speed 1.11 to 2.11 programmable transformation ratio
Type Resolution	Brushless, single-speed, 1:1 to 2:1 programmable transformation ratio 14 bits (equivalent to a 4096 line quadrature encoder)
Reference frequency	8.0 kHz
Reference voltage	2.8 Vrms, auto-adjustable by the drive to maximize feedback
Reference maximum current	
Maximum RPM	10,000+
ENCODER POWER SUPPLIES	·
Number	2
Ratings	+5 Vdc @ 400 mA from +5V Out1 on J8-20 and +5V Out2 on J10-6, J10-17
Protection	Thermal and short-circuits to ground
	Encoder power developed from $+24$ Vdc so position information is not lost when AC mains power is removed

XPL

SPECIFICATIONS (CONT'D)

MOTOR TORQUE OFF (MTO)
Inputs
Туре
Output

2 two-terminal: MTO-1(+), MTO-1(-), MTO-2(+), MTO-2(-) Opto-isolators, 24V compatible 1 two-terminal: MTO-LED(+), MTO-LED(-) 24V compatible

Note!

When you see this marker, it's for hot tips or best practices that will help you get the best results when using Copley Controls products.

16-01437 Document Revision History

Revision	Date	Remarks
00	March 20, 2017	Initial released version
01	June 21, 2019	Change Saft Torque Off to Motor Torque Off

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination of data-rate and low cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN COMMUNICATION

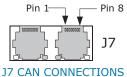
Xenus uses the CAN physical layer signals CAN H, CAN L, and CAN GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN address. A maximum of 127 CAN nodes are allowed on a single CAN bus. The rotary switch on the front panel controls the four lower bits of the seven-bit CAN address. When the number of nodes on a bus is less than sixteen, the CAN address can be set using only the switch.

For installations with sixteen or more CAN nodes on a network CME 2 can be used to configure Xenus to use the rotary switch, or combinations of digital inputs and programmed offset in flash memory to configure the drive with a higher CAN node address. For more information on CANopen communications, download the CANopen Manual from the Copley web-site: http://www.copleycontrols.com/motion/downloads/pdf/CANopenProgrammersManual.pdf

DRIVE STATE

Pre-operational

Operational


Stopped

Sync Error

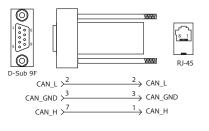
Bus-off

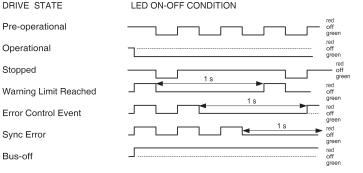
CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface. A CAN terminator should be placed in the last drive in the chain. The XPL-NK connector kit provides a D-Sub adapter that plugs into a CAN controller and has an RJ-45 socket that accepts the Ethernet cable.

NET (CAN STATUS) LED

A bi-color LED gives the state of the CAN connection in accordance with the CAN-CiA specification 303, part 3. The green (RUN) LED shows the state of the CANopen state machine. The red (ERR) LED shows the occurrence of errors (sync, guard, or heartbeat) and of the CAN bus physical laver.


During a reset condition, the green LED will be off. In operation, the red & green colors will alternate with the number of blinks or on/off condition shown in the table to the right.


Note: Red & green led on-times do not overlap. LED color may be red, green, off, or flashing of either color.

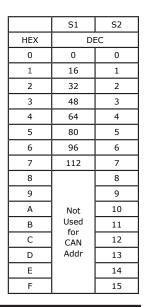
XPL-NK CAN CONNECTOR KIT

The kit contains the XPL-CV adapter that converts the CAN interface D-Sub 9M connector to an RJ-45 Ethernet cable socket, plus a 10 ft (3 m) cable and terminator. Both connector pin-outs conform to the CiA DR-303-1 specification.

(PI

CAN NETWORK NODE-ID (ADDRESS)

In an CANopen network, nodes are assigned addresses 1~127. Address 0 is reserved for the CAN bus master. In the XPL, the node address is provided by two 16-position rotary switches with hexadecimal encoding. These can set the address of the drive from $0x01 \sim 0x7F$ (1~127 decimal). The chart shows the decimal values of the hex settings of each switch.


CME2 -> Amplifier -> Network Configuration

Node-ID (Address) Switches

To find the Node-ID given the switch settings: Node-ID = (S1 * 16) + S2Example: S1 = 5, S2 = B S1 value = (5*16) = 80, S2 value = Hex(B) = 11, Node-ID = 80 + 11 = 91

To find the switch settings for a given address: S1 = The integer part of (Node-ID / 16) S2 = Hex (Node-ID - (S1 * 16))Example: Node-ID = 91S1 = 91/16 = 5.69, integer part = 5, (5*16) = 80 S2 = Hex (91 - 80) = 11 = 0xB

COMMUNICATIONS

RS-232 COMMUNICATIONS

XPL is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the XPL RS-232 port are through J7, an RJ-11 connector. The XPL Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

J6: RS-232 PORT

RJ-11 receptacle, 6 position, 4 contact

STAT LED (ON J6)

A bi-color LED gives the state of the Xenus Plus drive.

Colors do not alternate, and can be solid ON or blinking: Green/Solid Drive OK and enabled. Will run in response to reference inputs

or EtherCAT commands.

fault is removed.

Green/Sond	_
Green/Slow-Blinking	=
Green/Fast-Blinking	=

Green/Fast-Blinking

Red/Solid

Red/Blinking

Drive Fault conditions:

- Over or under-voltage
- Encoder +5 Vdc fault
- Short-circuits from output to output
- Internal short circuits

Positive or Negative limit switch active.

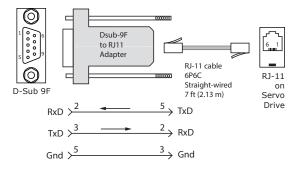
Drive OK but NOT-enabled. Will run when enabled.

Drive will only move in direction not inhibited by limit switch.

Latching fault. Operation will not resume until drive is Reset.

Transient fault condition. Drive will resume operation when

- Motor over-temperature Drive over-temperature
 - Short-circuits from output to ground


Faults are programmable to be either transient or latching

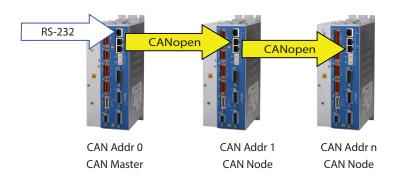
SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the XPL. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the XPL. The connections are shown in the diagram below.

Don't forget to order a Serial Cable Kit SER-CK when placing your order for an XPL!

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and Xenus series amplifiers over an RS-232 serial connection. For instance, after basic amplifier configuration values have been programmed using CME 2, a control program can use the ASCII Interface to:


- Enable the amplifier in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.
- The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter.

Sending a break character will reset the Baud rate to 9,600.

Additional information can be found in the ASCII Programmers Guide on the Copley website: http://www.copleycontrols.com/Motion/pdf/ASCII_ProgrammersGuide.pdf

RS-232 MULTI-DROP

The RS-232 specification makes no allowance for more than two devices on a serial link. But, multiple Xenus drives can communicate over a single RS-232 port by daisy-chaining a master drive to other drives using CAN cables. In the CAN protocol, address 0 is reserved for the CAN master and thereafter all other nodes on a CAN network must have unique, non-zero addresses. When the Xenus CAN address is set to 0, it acts as a CAN master, converting the RS-232 data into CAN messages and passing it along to the other drives which act as CAN nodes.

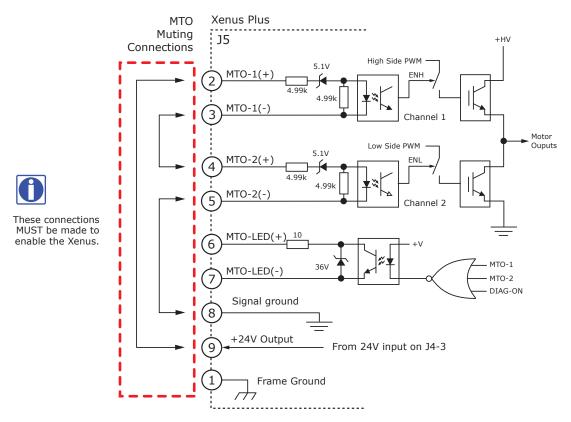
For Serial-multi-drop you'll need an Serial Cable Kit SER-CK plus CANopen network cables to connect the drives as shown. The XPL-NC-01 and XPL-NC-10 are 1 ft (0.3m) and 10 ft (3m) cables that will do the job.

MOTOR TORQUE OFF (MTO)

DESCRIPTION

The XPL has a safety feature that is designed to provide the Safe Torque Off (MTO) function as defined in IEC 61800-5-2. Two opto-couplers are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core. This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are activated (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

Xenus^{PLUS} CANopen


FUNCTIONAL DIAGRAM

In order for the PWM outputs of the Xenus Plus to be activated, current must be flowing through both opto-couplers that are connected to the MTO-1 and MTO-2 terminals of J5, and the drive must be in an ENABLED state. The LED outputs on J5 connect an opto-coupler to an external LED and will conduct current through the LED to light it whenever the PWM outputs can be activated, or the drive is in a diagnostic state. When the LED opto-coupler is OFF, the drive is in a Safe state and the PWM outputs cannot be activated to drive a motor.

MTO MUTING

The diagram below shows connections that will energize both MTO-1 and MTO-2 opto-couplers. When this is done the MTO feature is "muted" and control of the output PWM stage is under control of the digital control core. If not using the MTO feature, these connections must be made in order for the Xenus to be enabled.

FUNCTIONAL DIAGRAM

MTO CONNECTOR MUTING CONNECTIONS

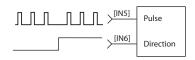
2-9 3-4 5-8	
رج 2-9 3-4	

J5 SIGNALS

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	MTO-LED(+)
2	MTO-1(+)	7	MTO-LED(-)
3	MTO-1(-)	8	24 Vdc Common
4	MTO-2(+)	9	+24 Vdc Output
5	MTO-2(-)		

COMMAND INPUTS

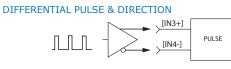
DIGITAL POSITION

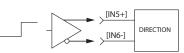

SINGLE-ENDED CU/CD

CU (Count-Up)

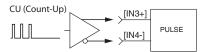
ЛЛЛ

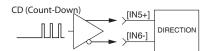
Digital position commands can be in either single-ended or differential format. Single-ended signals should be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs. Differential inputs have 121 Ω line-terminators.

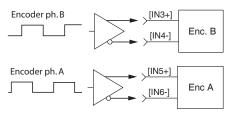



<u>≻^[IN5]</u>

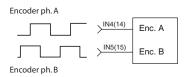
[IN6]


CU


СD



DIFFERENTIAL CU/CD


QUAD A/B ENCODER DIFFERENTIAL

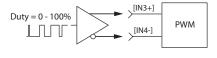
QUAD A/B ENCODER SINGLE-ENDED

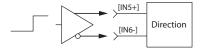
CD (Count-Down)

Π

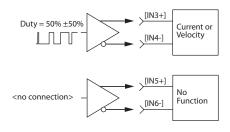
DIGITAL TORQUE, VELOCITY

Digital torque or velocity commands can be in either single-ended or differential format. Single-ended signals must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.


SINGLE-ENDED PWM & DIRECTION

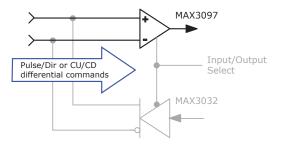


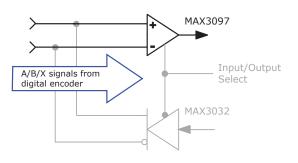
SINGLE-ENDED 50% PWM



DIFFERENTIAL PWM & DIRECTION

DIFFERENTIAL 50% PWM


MULTI-MODE ENCODER PORT


This port consists of three differential input/output channels that take their functions from the Basic Setup of the drive. With quad A/B encoder feedback, the port works as an output, buffering the signals from the encoder. With resolver or sin/cos encoder versions, the feedback is converted to "emulated" quad A/B/X signals with programmable resolution. These signals can then be fed back to an external motion controller that closes the position or velocity loops. As an input, the port can take quad A/B signals to produce a dual-loop position control system or use the signals as master-encoder commands in camming mode. In addition, the port can take stepper command signals (CU/CD or Pulse/Direction) in differential format.

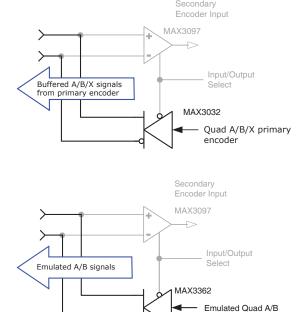
AS COMMAND INPUTS

AS DIGITAL COMMAND INPUTS IN PULSE/DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL OUADRATURE ENCODER FORMAT

The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used.

AS A MASTER OR CAMMING ENCODER INPUT FROM A DIGITAL QUADRATURE ENCODER

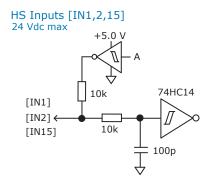
When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration.


AS AN OUTPUT FOR FEEDBACK SIGNALS TO AN EXTERNAL CONTROLLER

AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER

When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J8, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor.

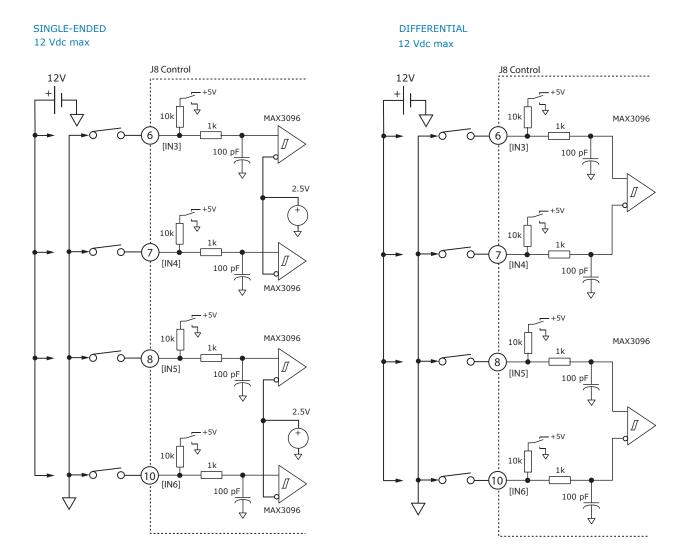
Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B/X signals that can be used as feedback to an external control system.


signals from analog Sin/Cos encoder

INPUTS

NON-ISOLATED DIGITAL INPUTS

Inputs [IN1,2,15] are 24V tolerant These are high-speed types with pull-up resistors to +5 Vdc and 1 μ s RC filters when driven by active sources. The active level is programmable on each input. Input [IN1] is dedicated to the drive enable function. The remaining inputs [IN2~IN15] have programmable functions.


DIGITAL INPUTS [IN3~6]

These inputs have all the programmable functions of the GP inputs plus these additional functions on [IN8] & [IN9] which can be configured as singleended or differential:

PLUS

CANopen

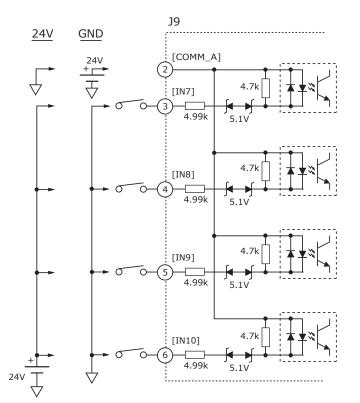
- PWM 50%, PWM & Direction for Velocity or Current modes
 - Pulse/Direction, CU/CD, or A/B Quad encoder inputs for Position or Camming modes

PLC outputs are frequently current-sourcing from 24V for driving grounded loads. PC based digital controllers commonly use NPN or current-sinking outputs. Set the Xenus inputs to pull-down to ground for current-sourcing connections, and to pull-up to 5V for current-sinking connections.

Tel: 781-828-8090

OPTO-ISOLATED DIGITAL INPUTS

These inputs have all the programmable functions of the GP inputs plus opto-isolation. There are two groups of four inputs, each with its' own common terminal. Grounding the common terminal configures the inputs to work with current-sourcing outputs from controllers like PLC's. When the common terminal is connected to +24V, then the inputs will be activated by current-sinking devices such as NPN transistors or N-channel MOSFETs. The minimum ON threshold of the inputs is ± 15 Vdc.


PLUS

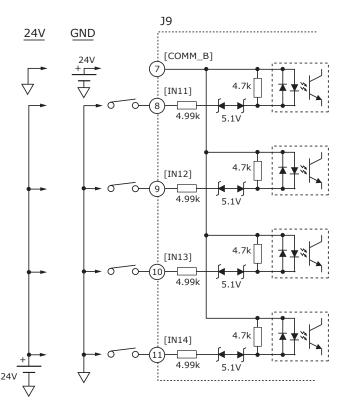
Xenus

[IN7~10] ±30 Vdc max

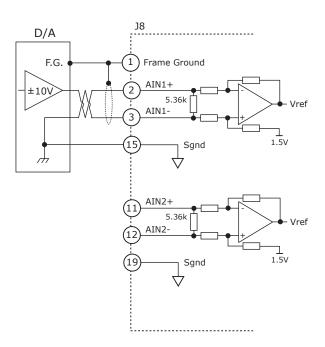
copley

controls

Inputs [7~14] work with current-sourcing OR current-sinking connections. Connect the COMM to controller ground/common for current-sourcing connections and to 15~24V from the controller for current-sinking connections.


ANALOG INPUTS

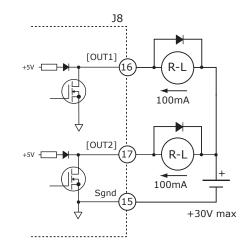
Two differential analog inputs with ± 10 Vdc range have programmable functions. As a reference input [AIN1] can take position/velocity/torque commands from a controller. A second input [AIN2] is programmable for other functions. The ratio of drive output current or velocity vs. reference input voltage is programmable.


[IN11~14]

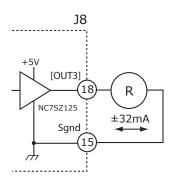
±30 Vdc max

CANopen

RoHS

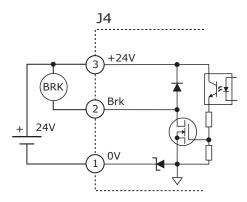


OUTPUTS

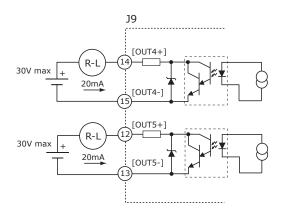

DIGITAL OUTPUTS [OUT1], [OUT2]

These are open-drain MOSFETs with 1 k Ω pull-up resistors in series with a diode to +5 Vdc. They can sink up to 1 Adc from external loads operating from power supplies to +30 Vdc. The output functions are programmable. The active state of the outputs is programmable to be on or off. When driving inductive loads such as a relay, an external fly-back diode is required.

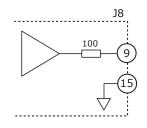
The internal diode in the output is for driving PLC inputs that are opto-isolated and connected to +24 Vdc. The diode prevents conduction from +24 Vdc through the 1 k Ω resistor to +5 Vdc in the drive. This could turn the PLC input on, giving a false indication of the drive output state.



HIGH SPEED OUTPUT [OUT3] 5V CMOS


BRAKE OUTPUT [OUT6]

This output is an open-drain MOSFET with an internal flyback diode connected to the +24 Vdc input. It can sink up to 1A from a motor brake connected to the +24 Vdc supply. The operation of the brake is programmable with *CME 2*. It can also be programmed as a general-purpose digital output.

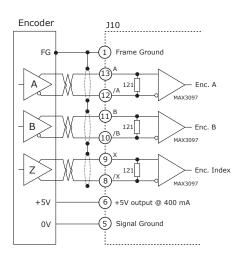

OPTO-ISOLATED OUTPUTS [OUT4,5]

30 Vdc max Zener clamping diodes across outputs allow driving of resistive-inductive (R-L) loads without external flyback diodes.

ANALOG OUTPUT

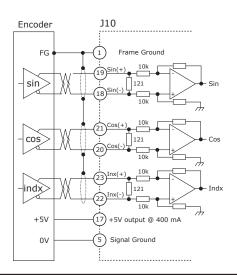
The analog output is programmable and has an output voltage range of ± 5 Vdc. An op-amp buffers the output of a 12-bit D/A converter.

Motor connections are of three types: phase, feedback, and thermal sensor. The phase connections carry the drive output currents that drive the motor to produce motion. A thermal sensor that indicates motor overtemperature is used to shut down the drive to protect the motor. Feedback can be digital quad A/B encoder, analog sin/cos encoder, resolver or digital Halls, depending on the version of the drive.

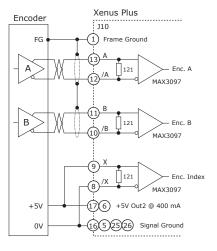

QUAD A/B ENCODER WITH FAULT PROTECTION

Encoders with differential line-driver outputs provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark. The MAX3097 receiver has differential inputs with fault protections for the following conditions:

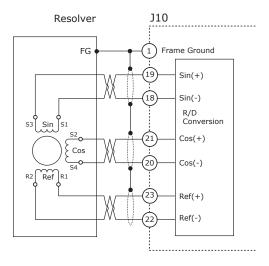
Short-circuits line-line: Open-circuit condition: This produces a near-zero voltage between A & /A which is below the differential fault threshold. The 121Ω terminator resistor will pull the inputs together if either side (or both) is open. This will produce the same fault condition as a short-circuit across the inputs.


Low differential voltage detection: ±15kV ESD protection: Extended common-mode range: This is possible with very long cable runs and a fault will occur if the differential input voltage is < 200mV. The 3097E has protection against high-voltage discharges using the Human Body Model. A fault occurs if the input common-mode voltage is outside of the range of -10V to +13.2V

CONNECTIONS WITH A/B/X ENCODER


ANALOG SIN/COS INCREMENTAL ENCODER

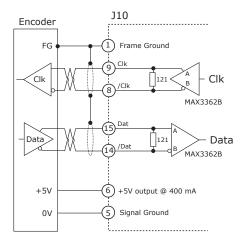
The sin/cos/index inputs are differential with 121 Ω terminating resistors and accept 1 Vp-p signals in the format used by incremental encoders with analog outputs, or with ServoTube motors.


CONNECTIONS WITH NO INDEX SIGNAL

(PL)

RESOLVER (-R MODELS)

Connections to the resolver should be made with shielded cable that uses three twisted-pairs. Once connected, resolver set up, motor phasing, and other commissioning adjustments are made with CME 2 software. There are no hardware adjustments.



MOTOR CONNECTIONS (CONT'D)

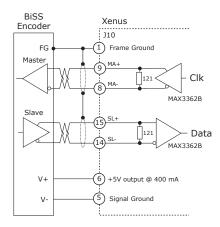
SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The XPL drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication

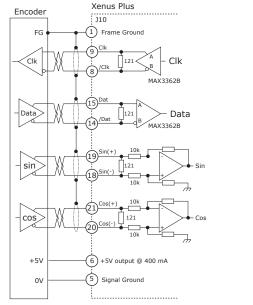

Cyclic at high speed

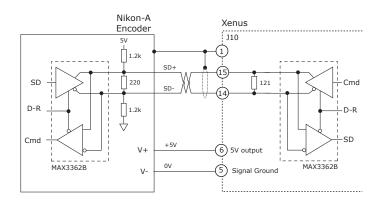
2 unidirectional lines Clock and Data

- Line delay compensation for high speed data transfer
- Request for data generation at slaves
- Safety capable: CRC, Errors, Warnings

Bus capability incl. actuators Bidirectional

BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode

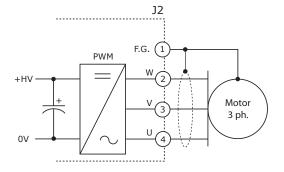


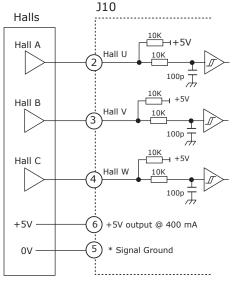

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog sin/cos channels from the same encoder. The number of position data bits is programmable as is the use of sin/cos channels. Use of sin/cos incremental signals is optional in the EnDat specification.

NIKON-A ABSOLUTE ENCODER

The Nikon A interface is a serial, half-duplex type that is electrically the same as $\mathsf{RS}\text{-}485$

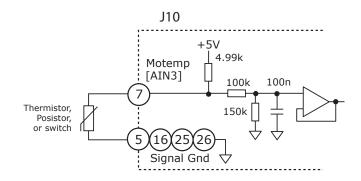




MOTOR CONNECTIONS (CONT'D)

MOTOR PHASE CONNECTIONS

The drive output is a three-phase PWM inverter that converts the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J2-1) for best results.


* Alternate Sgnd connections on J10 are pins 16, 25, 26

DIGITAL HALL SIGNALS

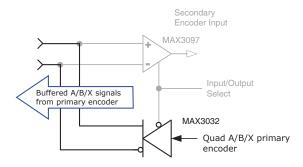
Hall signals are single-ended signals that provide absolute feedback within one electrical cycle of the motor. There are three of them (U, V, & W) and they may be sourced by magnetic sensors in the motor, or by encoders that have Hall tracks as part of the encoder disc. They typically operate at much lower frequencies than the motor encoder signals, and are used for commutation-initialization after startup, and for checking the motor phasing after the amplifier has switched to sinusoidal commutation.

MOTOR TEMPERATURE SENSOR

Analog input [AIN3] Motemp, is for use with a motor overtemperature switch or sensor. The input voltage goes through a low-pass filter to a 12-bit A/D converter. The active level of the input, Vset, is programmable generate an over-temperature fault if the input voltage is <Vset, or >Vset.

MOTOR CONNECTIONS (CONT'D)

MULTI-MODE ENCODER PORT


This port consists of three differential input/output channels that take their functions from the Basic Setup of the drive. With quad A/B encoder feedback, the port works as an output, buffering the signals from the encoder. With resolver or sin/cos encoder versions, the feedback is converted to "emulated" quad A/B/X signals with programmable resolution. These signals can then be fed back to an external motion controller that closes the position or velocity loops. As an input, the port can take quad A/B signals to produce a dual-loop position control system or use the signals as master-encoder commands in camming mode. In addition, the port can take stepper command signals (CU/CD or Pulse/Direction) in differential format.

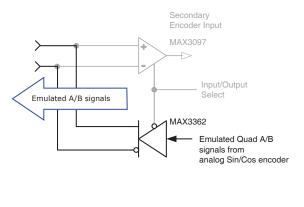
CANopen

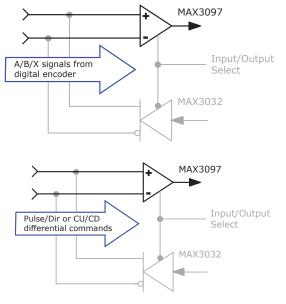
Xenus^{PLUS}

AS BUFFERED OUTPUTS FROM A DIGITAL QUADRATURE PRIMARY ENCODER

When using a digital quadrature feedback encoder, the A/B/X signals drive the multi-mode port output buffers directly. This is useful in systems that use external controllers that also need the motor feedback encoder signals because these now come from J8, the Control connector. In addition to eliminating "Y" cabling where the motor feedback cable has to split to connect to both controller and motor, the buffered outputs reduce loading on the feedback cable that could occur if the motor encoder had to drive two differential inputs in parallel, each with it's own 121 ohm terminating resistor.

AS EMULATED QUAD A/B/X ENCODER OUTPUTS FROM AN ANALOG SIN/COS FEEDBACK ENCODER

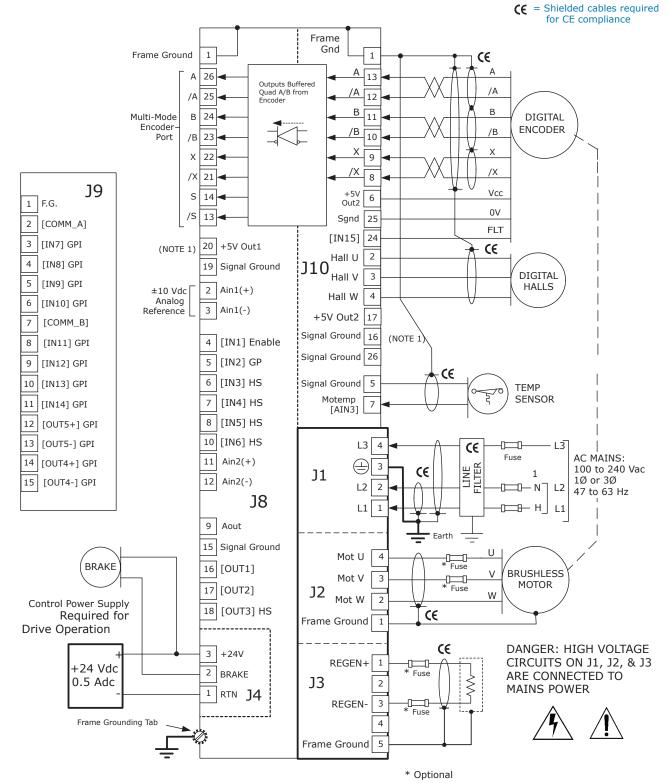

Analog sin/cos signals are interpolated in the drive with programmable resolution. The incremental position data is then converted back into digital quadrature format which drives the multi-mode port output buffers. Some analog encoders also produce a digital index pulse which is connected directly to the port's output buffer. The result is digital quadrature A/B/X signals that can be used as feedback to an external control system.



When operating in position mode the multi-mode port can accept digital command signals from external encoders. These can be used to drive cam tables, or as master-encoder signals when operating in a master/slave configuration.

AS DIGITAL COMMAND INPUTS IN PULSE/DIRECTION, PULSE-UP/PULSE-DOWN, OR DIGITAL QUADRATURE ENCODER FORMAT

The multi-mode port can also be used when digital command signals are in a differential format. These are the signals that typically go to single-ended inputs. But, at higher frequencies these are likely to be differential signals in which case the multi-mode port can be used.

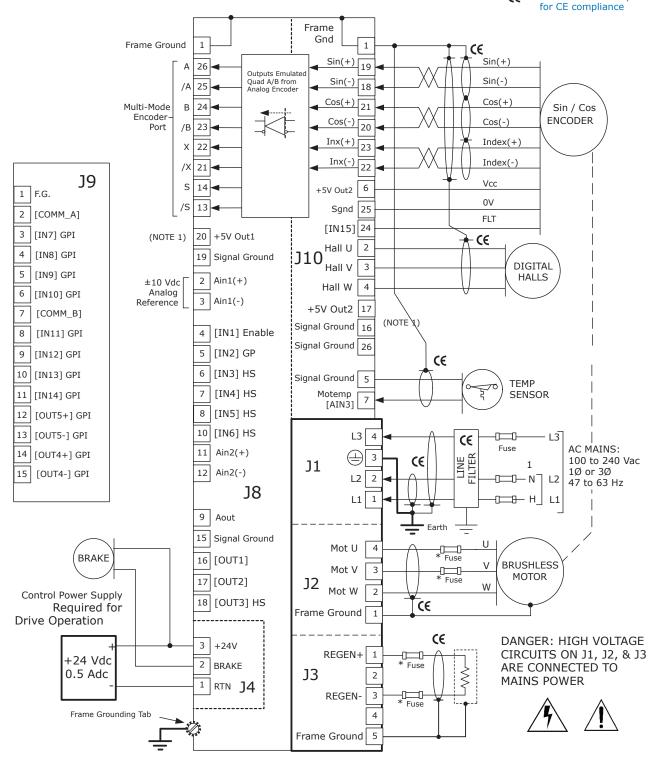


Xenus^{PLUS} CANopen XPL C Quad A/B Encoder

MOTOR CONNECTIONS (CONT'D)

NOTES:

1) +5V Out1 and Out2 are independent power supplies and each is rated for 400 mA


2) Line filter is required for CE

3) Active signals in Multi-Mode port depend on drive configuration. All are shown for completeness.

Xenus^{PLUS} CANopen XPL Sin/Cos Encoder

MOTOR CONNECTIONS (CONT'D)

NOTES:

* Optional

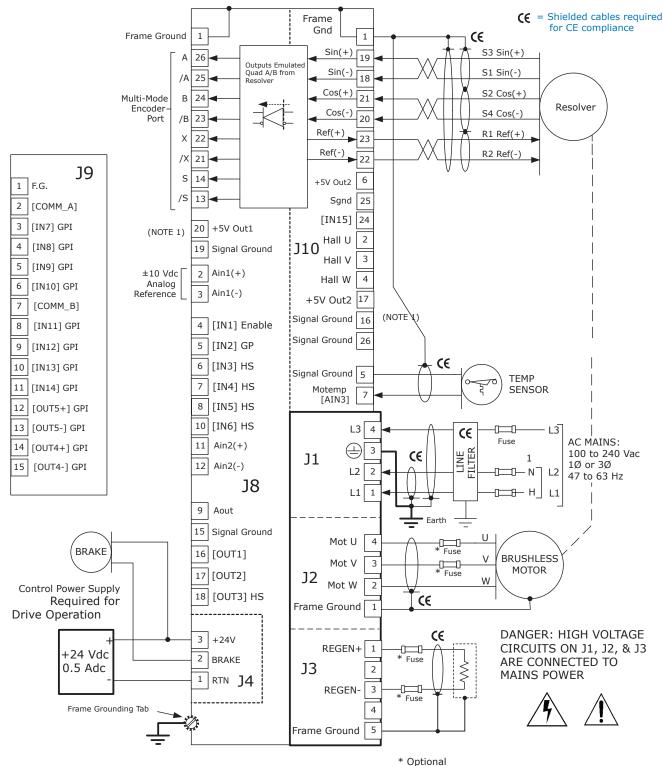
1) +5V Out1 and Out2 are independent power supplies and each is rated for 400 mA

2) Line filter is required for CE

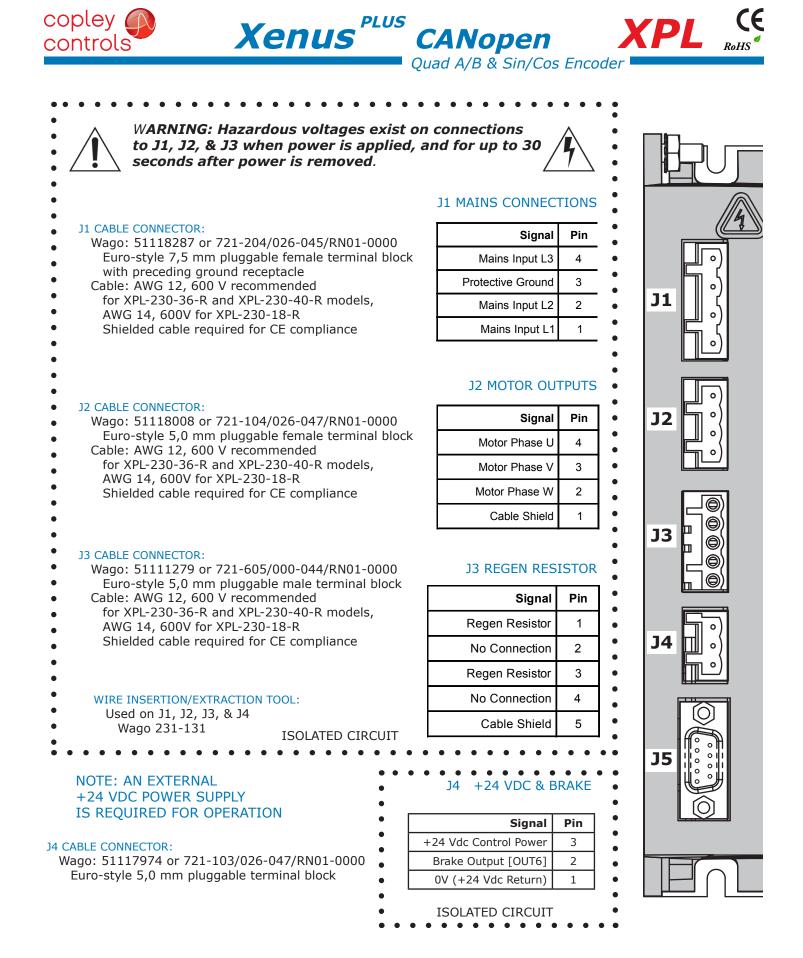
3) Active signals in Multi-Mode port depend on drive configuration. All are shown for completeness.

RoHS

(E = Shielded cables required

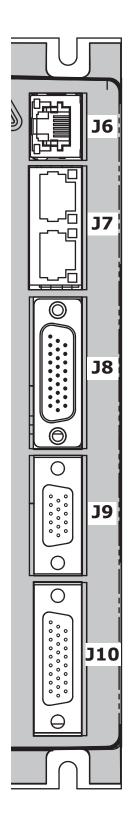

Xenus^{PLUS} CANopen Resolver

MOTOR CONNECTIONS (CONT'D)


copley

controls

NOTES:


- 1) +5V Out1 and Out2 are independent power supplies and each is rated for 400 mA
- 2) Line filter is required for CE
- 3) Active signals in Multi-Mode port depend on drive configuration. All are shown for completeness.

J8 CONTROL SIGNALS

PIN	SIGNAL	PIN	SIGNAL			
9	[AOUT]	18	[OUT3] HS][PIN	SIGNAL
8	[IN5] HS	17	[OUT2]		26	Multi Enc A2
7	[IN4] HS	16	[OUT1]		25	Multi Enc /A2
6	[IN3] HS	15	Signal Gnd		24	Multi Enc B2
5	[IN2] GP	14	Multi Enc S2][23	Multi Enc /B2
4	[IN1] GP	13	Multi Enc /S2][22	Multi Enc X2
3	[AIN1-]	12	[AIN2-]][21	Multi Enc /X2
2	[AIN1+]	11	[AIN2+]][20	+5 Vdc Out
1	Frame Gnd	10	[IN6] HS		19	Signal Gnd

J8 CABLE CONNECTOR:

High-Density D-Sub female, 26 Position

J9 SECONDARY I/O CONNECTOR

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	[IN10] GPI	11	[IN14] GPI
2	[COMM_A]	7	[COMM_B]	12	[OUT5+] GPI
3	[IN7] GPI	8	[IN11] GPI	13	[OUT5-] GPI
4	[IN8] GPI	9	[IN12] GPI	14	[OUT4+] GPI
5	[IN9] GPI	10	[IN13] GPI	15	[OUT4-] GPI

J9 CABLE CONNECTOR:

High-Density D-Sub male, 15 Position

J10 FEEDBACK

PIN	SIGNAL	PIN	SIGNAL		PIN	SIGNAL	¦
1	Frame Gnd	10	Enc /B1	[19	Sin1(+)] 2
2	Hall U	11	Enc B1		20	Cos1(-)]
3	Hall V	12	Enc /A1		21	Cos1(+)	
4	Hall W	13	Enc A1		22	Index1(-)]
5	Signal Gnd	14	Enc /S1		23	Index1(+)]
6	+5 Vdc Out	15	Enc S1	IΓ	24	[IN15]]
7	[AIN3] Motemp	16	Signal Gnd		25	Signal Gnd]
8	Enc /X1	17	+5 Vdc Out		26	Signal Gnd	
9	Enc X1	18	Sin1(-)	-			-

J10 CABLE CONNECTOR:

High-Density D-Sub male, 26 Position

J5 SAFETY DISABLE

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	MTO-LED(+)
2	MTO-1(+)	7	MTO-LED(-)
3	MTO-1(-)	8	24 Vdc Common
4	MTO-2(+)	9	+24 Vdc Output
5	MTO-2(-)		

J5 CABLE CONNECTOR:

D-Sub male, 9 Position

Copley of the second of the secon

- Wago: 51118287 or 721-204/026-045/RN01-0000 Euro-style 7,5 mm pluggable female terminal block with preceding ground receptacle Cable: AWG 12, 600 V recommended
- for XPL-230-36-R and XPL-230-40-R models,
- AWG 14, 600V for XPL-230-18-R
- Shielded cable required for CE compliance
- •
- •
- •
- •

J2 CABLE CONNECTOR:

- Wago: 51118008 or 721-104/026-047/RN01-0000
- Euro-style 5,0 mm pluggable female terminal block
- Cable: AWG 12, 600 V recommended
- for XPL-230-36-R and XPL-230-40-R models, AWG 14, 600V for XPL-230-18-R
- Shielded cable required for CE compliance

J3 CABLE CONNECTOR:

- Wago: 51111279 or 721-605/000-044/RN01-0000 Euro-style 5,0 mm pluggable male terminal block
- Cable: AWG 12, 600 V recommended
- for XPL-230-36-R and XPL-230-40-R models,
- AWG 14, 600V for XPL-230-18-R
- Shielded cable required for CE compliance

WIRE INSERTION/EXTRACTION TOOL:

Used on J1, J2, J3, & J4 Wago 231-131

ISOLATED CIRCUIT

NOTE: AN EXTERNAL +24 VDC POWER SUPPLY IS REQUIRED FOR OPERATION

J4 CABLE CONNECTOR:

Wago: 51117974 or 721-103/026-047/RN01-0000 Euro-style 5,0 mm pluggable terminal block

Mains Input L3	4
Protective Ground	3
Mains Input L2	2
Mains Input L1	1

J2 MOTOR OUTPUTS

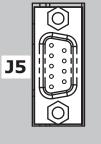
Signal	Pin
Motor Phase U	4
Motor Phase V	3
Motor Phase W	2
Cable Shield	1

J3 REGEN RESISTOR

Signal	Pin
Regen Resistor	1
No Connection	2
Regen Resistor	3
No Connection	4
Cable Shield	5

J4 +24 VDC & BRAKE

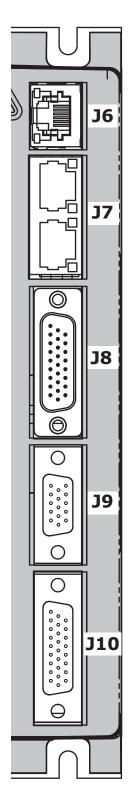
Signal	Pin
+24 Vdc Control Power	3
Brake Output [OUT6]	2
0V (+24 Vdc Return)	1


ISOLATED CIRCUIT

J2

J1

•



J8 CABLE CONNECTOR:

High-Density D-Sub female, 26 Position

J8 CONTROL SIGNALS

PIN	SIGNAL	PIN	SIGNAL			
9	[AOUT]	18	[OUT3] HS	PIN	SIGNAL	
8	[IN5] HS	17	[OUT2]	26	Multi Enc A2	
7	[IN4] HS	16	[OUT1]	25	Multi Enc /A2	
6	[IN3] HS	15	Signal Gnd	24	Multi Enc B2	
5	[IN2] GP	14	Multi Enc S2	23	Multi Enc /B2	
4	[IN1] GP	13	Multi Enc /S2	22	Multi Enc X2	
3	[AIN1-]	12	[AIN2-]	21	Multi Enc /X2	
2	[AIN1+]	11	[AIN2+]	20	+5 Vdc Out	
1	Frame Gnd	10	[IN6] HS	19	Signal Gnd	

J9 SECONDARY I/O CONNECTOR

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	[IN10] GPI	11	[IN14] GPI
2	[COMM_A]	7	[COMM_B]	12	[OUT5+] GPI
3	[IN7] GPI	8	[IN11] GPI	13	[OUT5-] GPI
4	[IN8] GPI	9	[IN12] GPI	14	[OUT4+] GPI
5	[IN9] GPI	10	[IN13] GPI	15	[OUT4-] GPI

J9 CABLE CONNECTOR:

High-Density D-Sub male, 15 Position

J10 FEEDBACK

PIN	SIGNAL	PIN	SIGNAL][PIN	SIGNAL
1	Frame Gnd	10	Enc /B1		19	Sin1(+) S3
2	Hall U	11	Enc B1		20	Cos1(-) S4
3	Hall V	12	Enc /A1		21	Cos1(+) S2
4	Hall W	13	Enc A1		22	Ref(-) R2
5	Signal Gnd	14	Enc /S1		23	Ref(+) R1
6	+5 Vdc Out	15	Enc S1		24	[IN15]
7	[AIN3] Motemp	16	Signal Gnd		25	Signal Gnd
8	Enc /X1	17	+5 Vdc Out		26	Signal Gnd
9	Enc X1	18	Sin1(-) S1			

J10 CABLE CONNECTOR:

High-Density D-Sub male, 26 Position

J5 SAFETY

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	MTO-LED(+)
2	MTO-1(+)	7	MTO-LED(-)
3	MTO-1(-)	8	24 Vdc Common
4	MTO-2(+)	9	+24 Vdc Output
5	MTO-2(-)		

J5 CABLE CONNECTOR:

D-Sub male, 9 Position

DRIVE POWER SOURCES

An external +24 Vdc power supply is required, and powers an internal DC/ DC converter that supplies all the control voltages for drive operation. Use of an external supply enables CAN communication with the drive when the mains power has been removed.

Power distribution in *XPL* is divided into three sections: +24 Vdc, signal, and high-voltage. Each is isolated from the other and all are isolated from the chassis.

EXTERNAL +24 VDC

The primary side of the DC/DC converter operates directly from the external +24 Vdc supply and is isolated from other drive power sections. The Brake output [OUT6] operates in this section and is referenced to the +24 Vdc return (0V). It sinks current from an external load connected to the external +24 Vdc power source.

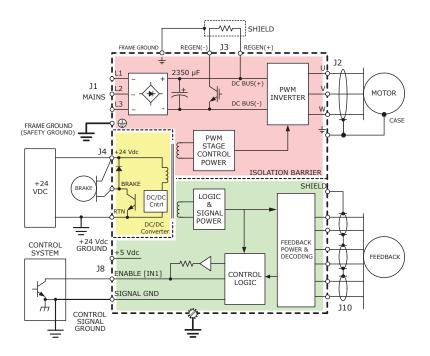
INTERNAL SIGNAL POWER

The signal power section supplies power for the control circuits as well as logic inputs and outputs. Motor feedback signals such as Halls, encoder, and temperature sensor operate from this power source. All signal circuits are referenced to signal ground. This ground should connect to the control system circuit ground or common so that drive and controller inputs and output voltage levels work properly with each other.

MAINS POWER

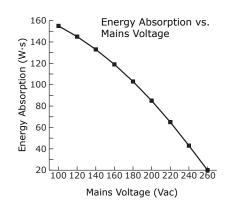
Mains power drives the high-voltage section. It is rectified and capacitor-filtered to produce +HV which the PWM stage converts into voltages that drive either three phase brushless or DC brush motors. An internal solid-state switch together with an external power resistor provides dissipation during regeneration when the mechanical energy of the motor is converted back into electrical energy that must be dissipated before it charges the internal capacitors to an overvoltage condition. All the circuits in this section are "hot", that is, they connect directly to the mains and must be considered high-voltages and a shock hazard requiring proper insulation techniques during installation.

GROUNDING


A grounding system has three primary functions: safety, voltage-reference, and shielding. As a safety measure, the primary ground at J1-3 will carry fault-currents from the mains in the case of an internal failure or short-circuit of electronic components. Wiring to this is typically done with the green conductor with yellow stripe using the same gauge wire as that used for the mains. The pin on the drive at J1-3 is longer than the other pins on J1 giving it a first-make, last-break action so that the drive chassis is never ungrounded when the mains power is connected. This wire is a 'bonding' conductor that should connect to an earthed around point and must not pass through any circuit interrupting devices.

All of the circuits on J1, J2, and J3 are mainsconnected and must never be grounded. The ground terminals at J1-3, J2-1, and J3-5 all connect to the drive chassis and are isolated from all drive internal circuits.

Signal grounding references the drive control circuits to those of the control system. These controls circuits typically have their own earth connection at some point. To eliminate ground-loops it is recommended that the drive signal ground be connected to the control system circuit ground. When this is done the drive signal voltages will be referenced to the same 0 V level as the circuits in the control system. Small currents flow between controller and drive when inputs and outputs interact. The signal ground is the path for these currents to return to their power sources in both controller and drive.


Shields on cables reduce emissions from the drive for CE compliance and protect internal circuits from interference due to external sources of electrical noise. Because of their smaller wire gauge, these should not be used as part of a safety-ground system. Motor cases can be safety-grounded either at the motor, by earthing the frame, or by a grounding conductor in the motor cable that connects to J2-1. This cable should be of the same gauge as the other motor phase cables.

For CE compliance and operator safety, the drive heatplate should be earthed to the equipment frame. An unplated tab is provided on the heatplate (near to J1) for this connection.

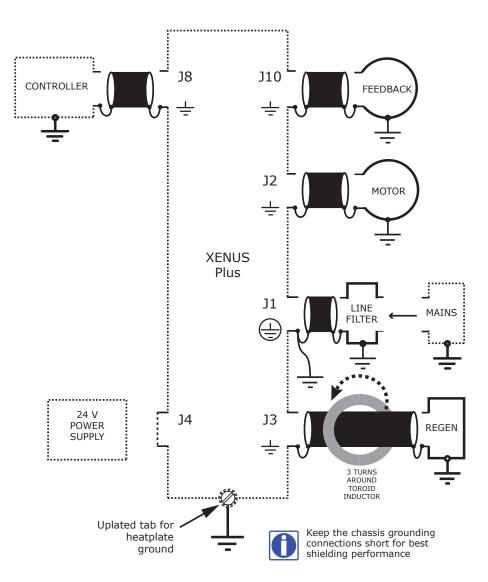
REGENERATION

The chart below shows the energy absorption in W·s for a *Xenus Plus* drive operating at some typical mains voltages. When the load mechanical energy is greater than these values an external regen resistor is available as an accessory.

GROUNDING & SHIELDING FOR CE

Xenus^{PLUS}

copley


controls

Grounding and shielding are the means of controlling the emission of radio frequency energy from the drive so that it does not interfere with other electronic equipment. The use of shielded cables to connect the drive to motors and feedback devices is a way of extending the chassis of the drive out to these devices so that the conductors carrying noise generated by the drive are completely enclosed by a conductive

shield. The process begins at the mains connector of the drive, J1. The ground terminal here has a circle around it indicating that this is the safety or "bonding" ground connection. This should be connected with wire that is the same gauge as that used for the mains. In the case of a short-circuit in the drive the function of this ground connection is to carry the fault current to earth ground until the safety device (fuse or circuit breakers) disconnects the drive from the mains. This connection ensures that the heatplate of the drive remains at earth potential and eliminating a shock hazard that could occur of the chassis were allowed to float to the potential of the mains.

While this connection keeps the heatplate at earth potential the high frequency noise generated by switching circuits in the drive can radiate from the wire used for the safety ground connection. In order to keep the path between the heatplate and earth as short as possible it's also recommended to mount the drive to the equipment panel. An unplated tab on the heatplate is provided for this and will ground the heatplate directly to the equipment frame, further reducing emissions.

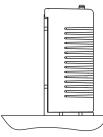
The heatplate also connects directly to the frame ground terminals on the motor, feedback, and regen connectors. Note that the ground symbols for these do not have a circle around them which indicates that these are for shielding and not not for safety grounding. Motors and their feedback devices (which are typically in the motor case) should be grounded by mounting to equipment that is grounded as a safety ground. By connecting the shields for these devices at the drive and at the device, the connection is continuous and provides a return path for radio-frequency energy to the drive.

CANopen

XPL

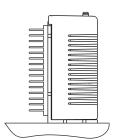
Notes:

1) Shielded cables required for CE are shown in the diagram above.


2) Line filter required for CE

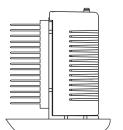
3) Ferrite core (Magnetics Inc, ZW43615-TC) required for shielded cable to regen resistor which must be in shielded enclosure.

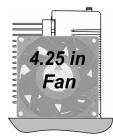
HEATSINK & FAN CONFIGURATIONS



NO HEATSINK NO FAN

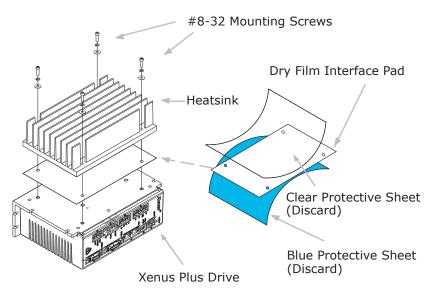
NO HEATSINK WITH FAN


NOTE: FANS ARE NOT INCLUDED WITH HEATSINKS OR HEATSINK KITS


LOW-PROFILE HEATSINK NO FAN

LOW PROFILE HEATSINK WITH FAN

STANDARD HEATSINK NO FAN


STANDARD HEATSINK WITH FAN

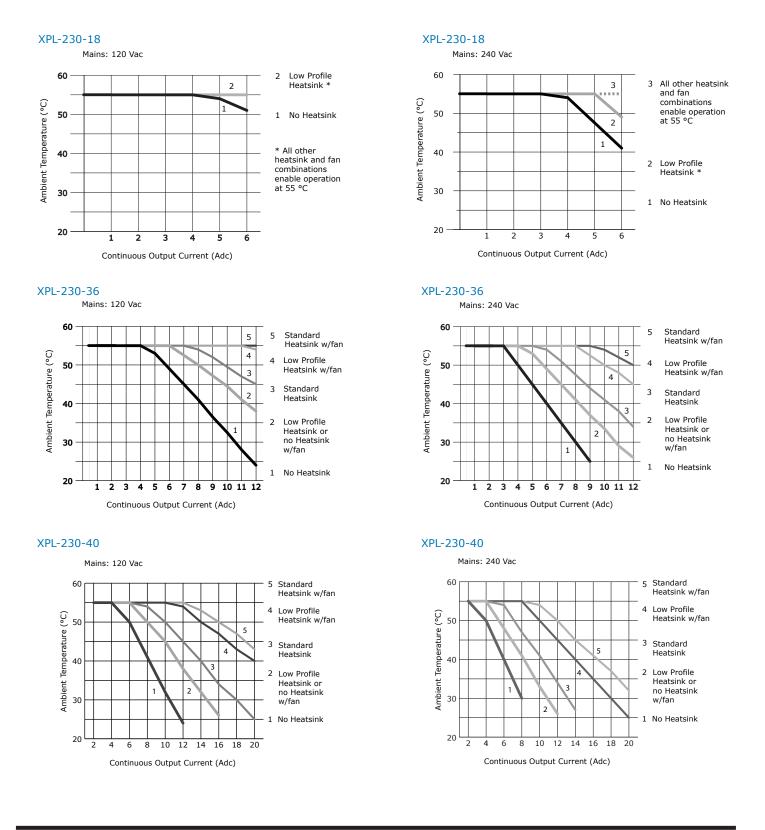
HEATSINK MOUNTING

A dry-film interface pad is used in place of thermal grease. The pad is die-cut to shape and has holes for the heat sink mounting screws. There are two protective sheets, blue on one side and clear on the other. Both must be removed when the interface pad is installed.

STEPS TO INSTALL

- 1. Remove the blue protective sheet from one side of the pad and place the pad on the drive. Make sure that the holes in the pad align with the holes on the drive.
- 2. Remove the clear protective sheet from the pad.
- 3. Mount the heatsink onto the drive taking care to see that the holes in the heatsink, pad, and drive all line up.
- 4. Torque the #8-32 mounting screws to 16~20 lb-in (1.8~2.3 N·m).

MAXIMUM OPERATING TEMPERATURE VS HEATSINK TYPE & AIR CIRCULATION


Xenus^{PLUS}

copley

controls

The charts below show that maximum ambient temperature vs. continuous output current for the Xenus Plus models. The cooling options are no heatsink, standard heatsink, and low-profile heatsink. For each of these the drive can be operated with convection or forced-air cooling.

CANopen

Tel: 781-828-8090

(PL

RoHS

copley controls

Xenus^{PLUS} CANopen

ORDERING GUIDE

XPL-230-18	Xenus Plus Servo Drive 6/18 Adc
XPL-230-36	Xenus Plus Servo Drive 12/36 Adc
XPL-230-40	Xenus Plus Servo Drive 20/40 Adc

Example: Order one *Xenus Plus* drive, resolver version, 6/18 A with solder-cup connector Kit, *CME 2* CD, serial cable kit and small heatsink fitted at the factory: Qty Item Remarks 1 XPL-230-18-R-HS *Xenus Plus* servo drive 1 XPL-230-18-R-HS Connector Kit 1 CME2 CME2 CD 1 SER-CK Serial Cable Kit Nete: The heatsink can be fitted at the factory by adding an "LHS" or " LH" to the drive part sumbra to config."

Xenus Plus servo) a
Connector Kit	
CME2 CD	
Serial Cable Kit	

Note: The heatsink can be fitted at the factory by adding an "-HS" or "-HL" to the drive part number to specify the standard or low-profile type. For fitting a heatsink to an drive in the field, complete kits are available (XPL-HS and XPL-HL). These kits contain the heatsink, mounting hardware, and dry-film interface.

Add ``-R'' to model number for resolver option

ACCESSORIES

	QTY	REF	DESCRIPTION	MANUFACTURERS PART NUMBER
XPL-CK	1	J1	Plug, 4 position, 7.5 mm, female	Wago: 721-204/026-045 (Note 1)
Connector Kit	1	J2	Plug, 4 position, 5.0 mm, female	Wago: 721-104/026-047 (Note 1)
with	1	J3	Plug, 5 position, 5.0 mm, male	Wago: 721-605/000-044 (Note 1)
Solder Cup	1	J4	Plug, 3 position, 5.0 mm, female	Wago: 721-103/026-047 (Note 1)
Connectors for	4	J1~4	Tool, wire insertion & extraction (for J1~4)	Wago: 231-131
J5, J8, J9 & J10	1	15	Connector, D-Sub, 9-position, male, solder cup	Norcomp: 171-009-103L001
	1 35		Backshell, D-Sub, RoHS, metallized, for above	Norcomp: 979-009-020R121
1 10		10	Connector, high-density D-Sub, 26 position, female, solder cup	Norcomp: 180-026-203L001
	J8		Backshell, D-Sub, RoHS, metallized, for above	Norcomp: 979-015-020R121
	1	19	Connector, high-density D-Sub, 15 position, male, solder cup	Norcomp: 180-015-103L001
	1	19	Backshell, D-Sub, RoHS, metallized, for above	Norcomp: 979-009-020R121
	1	110	Connector, high-density D-Sub, 26 position, male, solder cup	Norcomp: 180-026-103L001
	1	J10	Backshell, D-Sub, RoHS, metallized, for above	Norcomp: 979-015-020R121
SER-CK	J	5	RS-232 Cable Kit	

Heatsink Kits for Field Installation (Optional)

XPL-HL Heatsink Kit Low-Profile	1	Heatsink, low-profile			
	1	Heatsink thermal material			
	4	Heatsink hardware			
XPL-HS Heatsink Kit Standard	1	Heatsink, standard			
	1	Heatsink thermal material			
	4	Heatsink hardware			

Regeneration Resistors (Ontional)

XTL-RA-03		Regeneration resistor assembly (for XPL-230-18), 30 Ω				
XTL-RA-04		Regeneration resistor assembly (for XPL-230-36 & XPL-230-40 models), 15 Ω				
Edge Filter (Optional)						
XTL-FA-01		Edge filter				
Edge Filter Connector Kit XTL-FK	1	Plug, 4 position, 5.0 mm, female	Wago: 721-104/026-047			
	1	Plug, 5 position, 5.0 mm, male	Wago: 721-605/000-044			
	2	Tool, wire insertion & extraction	Wago: 231-131			

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above

Connectors & Software for CANopen Operation

1		D-Sub 9F to RJ-45 Adapter	
1		CAN bus RJ-45 terminator	
1		CAN bus network cable, 10 ft (3 m)	
1	J7	D-Sub 9F to RJ-45 Adapter	
1		CAN bus Network Cable, 10 ft (3 m)	
1		CAN bus Network Cable, 1 ft (0.3 m)	
1		CAN bus Network Terminator	
		CD with CMO Software	
		CD with CML Software (Note: license fee required)	
	1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	

Note: Specifications are subject to change without notice