

DIGITAL STEPPER DRIVE FOR STEPPER MOTORS

CONTROL MODES

• Stepper mode: Cyclic Synchronous Position (CSP)

• Servo mode: Cyclic Synchronous Position/Velocity/Torque

(CSP, CSV, CST)

• Profile Position-Velocity-Torque, Interpolated Position, Homing

· Camming, Gearing

Indexer

COMMAND INTERFACE

• CANopen application protocol over EtherCAT (CoE)

• ASCII and discrete I/O

• Master encoder (Gearing/Camming)

• Stepper mode position commands:

Digital: Pulse/Dir, CW/CCW, Quad A/B

Analog: ±10V position • Servo mode commands:

Digital: Pulse/Dir, CW/CCW, Quad A/B

PWM Velocity/Torque command

Analog: ±10V Position/Velocity/Torque

COMMUNICATIONS

EtherCAT

• RS-232

FEEDBACK

Incremental Encoders

• Digital quad A/B/X

· Panasonic Incremental A Format

• Aux. quad A/B encoder / encoder out

Absolute Encoders

• EnDat, BiSS, SSI, Absolute A

I/O DIGITAL

• 16 non-isolated, 8 isolated inputs

• 5 isolated outputs, 2 non-isolated outputs

ANALOG

• 2 Reference Inputs, 12-bit

SAFE TORQUE OFF (STO)

• SIL 3, Category 3, PL d

DIMENSIONS: IN [MM]

• 6.78 x 4.70 x 1.99 [172.1 x 119.3 x 50.4] no heatsink

• 6.78 x 4.70 x 3.14 [172.1 x 119.3 x 79.9] with heatsink

Model	Ip	Ic	Vdc
TE2-090-07	7	5	90
TE2-090-10	10	10	90

Current ratings are for each axis

DESCRIPTION

Stepnet Plus TE2 is a 2-axis, high-performance DC powered microstepping drive for control of hybrid stepping motors via EtherCAT using the CAN Application Layer for EtherCAT (CoE). Microstepping modes are Profile Position, Interpolated Position Mode (PVT), and Homing. With encoder feedback, the TE2 can operate a stepper as a brushless servo motor, enabling Cyclic Sync Position/ Velocity/Torque operation, too.

As well as operating on EtherCAT networks, the TE2 also operates in the following traditional control modes: step/direction, RS-232 ASCII, master encoder for gearing and camming, digital input commands to initiate predetermined motion sequences.

There are sixteen non-isolated inputs and eight opto-isolated digital inputs that are bipolar types, sourcing or sinking current into a common connection that can be tied to ground or +24V. [IN1&10] default to the drive Enable function for axes A & B, and are programmable to other functions. The other inputs are programmable. All inputs have programmable active levels. Five opto-isolated outputs [OUT1~5] have individual collector/emitter connections. Two MOSFET outputs [OUT6~7] are programmable to drive motor brakes or other functions and have internal flyback diodes for driving inductive loads.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation permitting the drive power stage to be completely powered down without losing position information, or communications with the control system.

GENERAL SPEC	IFICATIONS		_
	Wye connected load: 2 mH	$+$ 2 Ω line-line. Ambient	temperature = 25°C, +HV = HV_{max}
MODEL	TE2-090-07	TE2-090-10	
OUTPUT POWER (EACH A) Peak Current Peak time Continuous current (No	7 (5) 1	10 (7.1) 1 10 (7.1)	Adc (Arms-sine), ±5% Sec Adc (Arms-sine) per phase
	ote 1) 5 (3.5)	10 (7.1)	Auc (Arms-sine) per phase
INPUT POWER HVmin~HVmax Ipeak Icont Aux HV 4 W (T	+14 to +90 14 10 +14 to +90 Vdc Typ no load on encoder +5V outp		Vdc Transformer-isolated Adc (1 sec) peak Adc continuous Optional, not required for operation er +5V @ 500 mA)
DIGITAL CONTROL Digital Control Loops Sampling rate (time) Bus voltage compensat Minimum load inductan COMMAND INPUTS (NOTE Distributed Control Mod	ice E: DIGITAL INPUT FUNCTIONS /	Changes in bus or mains vo 200 µH line-line	100% digital loop control μs), Velocity & position loops: 4 kHz (250 μs) oltage do not affect bandwidth
		Cyclic Synchronous Posit	ion (CSD) Cyclic-sync Valacity/Tarqua (CSV, CST, sarva mada)
<i>Stand-alone mode</i> Analog position, vel Digital position refe	rotocol over EtherCAT (CoE) locity/torque(servo mode) erence locity reference (servo mode)		
Indexing Camming ASCII		PWM frequency range PWM minimum pulse wid Up to 32 sequences can Up to 10 CAM tables can	1 kHz minimum, 100 kHz maximum
DIGITAL INPUTS			
Number 24 [IN1,2,10,11]	Digital, non-isolated, Schmitt t	rigger, 1.5 us RC filter, 24 Vd	c compatible, programmable 15kΩ pull-up/down
[IN19~21,22~24]	to +5 Vdc/ground, Vt+ = 2.5 ~	3.5 Vdc, VT- = $1.3 \sim 2.2$ Vdc, rigger, $1.5 \mu s$ RC filter, 24 Vd	
[IN3,4,12,13]	Digital, non-isolated, programm programmable pull-up/down pe	mable as single-ended or diffeer input to +5 Vdc/ground,	rential pairs, 100 ns RC filter, 12 Vdc max,
[IN5~8,14~17]	Digital, opto-isolated, single-er	nded, ±15~30 Vdc compatible	of IFF: Vin-LO \leq 200 mVdc, Vin-HI \geq 200 mVdc, VH = 45 mV type, bi-polar, 2 groups of 4, each with a common terminal Vdc, Input current \pm 3.6 mA @ \pm 24 Vdc, typical
[IN9,18]	Other digital inputs are also	programmable for the Motem	I2 Vdc max, programmable to other functions p function Vdc, VT- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc
Functions			axes A & B Enable function and are programmable
ANALOG INPUTS Number [AIN1~2]	2 Differential, ± 10 Vdc, $5 \text{ k}\Omega$ inpo	ut impedance 12 hit recolution	20
SAFE TORQUE OFF (STO)	Differential, ±10 vdc, 3 kt2 inpo	ut impedance, 12-bit resolution	лі
Function Standard Safety Integrity Level Inputs Type Input current (typical) Response time Reference	Designed to IEC-61508-1, IEC- SIL 3, Category 3, Performance 2 two-terminal: STO_IN1+,STO Opto-isolators, 24V compatible STO_IN1: 9.0 mA, STO_IN2: 4 2 ms (IN1, IN2) from Vin ≤6.0	61508-2, IEC-61800-5-2, ISC e level d $)$ IN1-, STO_IN2+, STO_IN2-, Vin-LO \leq 6.0 Vdc or open, 5 mA Vdc to interruption of energy	/in-HI ≥ 15.0 Vdc,
DIGITAL OUTPUTS			
Number [OUT1~5] [OUT6~7]	7 Opto-isolated SSR, two-termina Opto-isolated MOSFET, default 1 Adc max, flyback diodes to + Programmable for other function	as motor brake control, curre 24 V external power supply for	
RS-232 PORT Signals Mode Protocol			connector, non-isolated, common to Signal Ground nd control, 9,600 to 115,200 Baud
Format Protocol	Dual RJ-45 receptacles, 100BA EtherCAT, CANopen application		E), CiA-402 for motion control devices

1) Heatsink or forced-air required for continuous current rating

NOTES:

DC POWER OUTPUTS

Stepnet Plus 2-Axis Panel EtherCAT

GENERAL SPECIFICATIONS

Number: Ratings 2: +5 Vdc, 500 mA max each output, thermal and short-circuit protected Connections

Axis A: J1-17, J1-32, J7-6, J7-17; combined current from these pins cannot exceed 500 mA Axis B: J1-23, J1-38, J8-6, J8-17; combined current from these pins cannot exceed 500 mA

INDICATORS

AMP Bicolor LED, drive state indicated by color, and blinking or non-blinking condition

RUN Green LED, status of EtherCAT state-machine (ESM)

ERR Red LED, shows errors due to time-outs, unsolicited state changes, or local errors L/A

Green LED, Link/Act, shows the state of the physical link and activity on the link (EtherCAT connection) RUN, ERR, and L/A LED colors and blink codes conform to ETG.1300 S(R) V1.1.0

PROTECTIONS

HV Overvoltage +HV > +90 VdcDrive outputs turn off until +HV < +90 Vdc HV Undervoltage +HV < +14 Vdc Drive outputs turn off until +HV > +14 Vdc

Drive over temperature Heat plate > 70°C. Drive outputs turn off

Short circuits Output to output, output to ground, internal PWM bridge faults I2T Current limiting Programmable: continuous current, peak current, peak time Motor over temperature Digital inputs programmable to detect motor temperature switch

MECHANICAL & ENVIRONMENTAL

Size IN [MM] 6.78 x 4.70 x 1.99 [172.1 x 119.3 x 50.4] without heatsink $6.78 \times 4.70 \times 3.14$ [172.1 x 119.3 x 79.9] with heatsink 1.5 [0.68] without heatsink, 2.75 [1.25] with heatsink 0 to +45C operating, -40 to +85C storage Weight LB[KG]

Ambient temperature

Humidity

0 to 95%, non-condensing 2 g peak, 10~500 Hz (sine), IEC60068-2-6 Vibration Shock 10 g, 10 ms, half-sine pulse, IEC60068-2-27

Contaminants Pollution degree 2 Environment IEC 60068-2

Cooling Heat sink and/or forced air cooling required for continuous power output

AGENCY STANDARDS CONFORMANCE

Standards and Directives

Functional Safety

IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)

Directive 2006/42/EC (Machinery)

ISO 13849-1/Cor. 1:2009 (Cat 3, PL d)

IEC 61800-5-2 (SIL3)

Product Safety

Directive 2014/35/EU (Low Voltage)

IEC 61800-5-1

EMC

Directive 2014/30/EU (EMC) IEC 61800-3

Restriction of the Use of Certain Hazardous Substances (RoHS)

Directive 2011/65/EU (RoHS II)

Approvals

UL and cUL recognized component to: UL 61800-5-1, 1st Ed.

TÜV SÜD Functional Safety to: IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)

ISO 13849-1/Cor. 1:2009 (Cat 3, PL d)

RoHS Directive 2011/65/EU is now part of the CE marking procedure

GENERAL SPECIFICATIONS

FEEDBACK

Incremental:

Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required) Digital Incremental Encoder

5 MHz maximum line frequency (20 M counts/sec)

MAX3094 differential line receiver with 121 Ω terminating resistor between A & /A, B & /B inputs X & /X inputs have 130 Ω terminating resistor, S & /S inputs have 221 Ω terminating resistor X & S inputs have 1 k Ω pull-ups to +5V, /X & /S inputs have 1 k Ω pull-downs to ground

Absolute: Serial data and clock signals (DATA, /DATA, CLK, /CLK), differential, 121 Ω inputs Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A **EnDat** Absolute A

SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication

Status data for encoder operating conditions and errors

MULTI-MODE ENCODER PORT

As Input

Digital quadrature encoder (A, /A, B, /B, X, /X), 5 MHz maximum line frequency (20 M counts/sec), MAX3094 line receiver, 1.5 k Ω pull-ups to +5V on X & S inputs, 1.5 k Ω pull-downs to Sgnd on /X & /S inputs

Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation,

S & X inputs are used for absolute encoder interface

As Emulated Output Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev

from absolute encoders

A, /A, B, /B, from MAX3032 differential line driver, X, /X, S, /S from MAX3362 differential line driver

As Buffered Output Digital A/B/X encoder feedback signals from primary quad encoder are buffered (see line drives above)

ETHERCAT COMMUNICATIONS

EtherCAT is the open, real-time Ethernet network developed by Beckhoff based on the widely used 100BASE-TX cabling system. EtherCAT enables high-speed control of multiple axes while maintaining tight synchronization of clocks in the nodes.

(CoE) based on DSP-402 for motion control devices.
More information on EtherCAT can be found on this web-site: http://ethercat.org/default.htm

ETHERCAT CONNECTIONS

Dual RJ-45 sockets accept standard Ethernet cables. The IN port connects to a master, or to the OUT port of a device that is 'upstream', between the Stepnet and the master. The OUT port connects to 'downstream' nodes. If Stepnet is the last node on a network, only the IN port is used. No terminator is required on the OUT port.

Data protocol is CANopen application protocol over EtherCAT

ΙN OUT 8 8 L/A

J4: EtherCAT PORTS RJ-45 receptacles, 8 position, 4 signals

PIN	SIGNAL
6	RX-
3	RX+
2	TX-
1	TX+

ETHERCAT LEDS (ON RJ-45 CONNECTORS)

Green: Shows the state of the ESM (EtherCAT State Machine)

Off Init

Blinking = Pre-operational Single-flash = Safe-operational Operational

ERR Red: Shows errors such as watchdog timeouts and unsolicited state changes in the TE2 due to local errors.

= EtherCAT communications are working correctly Off Blinking = Invalid configuration, general configuration error

Single Flash = Local error, slave has changed EtherCAT state autonomously

Double Flash = PDO or EtherCAT watchdog timeout, or an application watchdog timeout has occurred

Green: Shows the state of the physical link and activity on the link.

A green LED indicates the state of the EtherCAT network:

I FD I ink Activity Condition

ON Yes No Port Open

Flickering Yes Yes Port Open with activity

Off Nο (N/A)Port Closed

EtherCAT DEVICE ID (STATION ALIAS)

In an EtherCAT network, slaves are automatically assigned consecutive addresses based on their position on the network. But when the device must have a positive identification that is independent of cabling, a Device ID is used. In the TE2, this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x00~0xFF (0~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Device ID 107:

- 1) Find the highest number in the x10 column that is less than 107 and set x10 to the hex value in the same row: 96 < 107 and 112 > 107, so x10 = 96 = Hex 6
- 2) Subtract 96 from the desired Device ID to get the decimal value for the switch x1 and set it to the Hex value in the same row: x1 = (107 - 96) = 11 = Hex B
- 3) Result: X10 = 6, X1 = B, Alias = 0x6B (107)

EtherCAT Device ID Switch Decimal values

Set	x10	x1	Set	x10	x1
Hex	De	ec	Hex	D	ec
0	0	0	8	128	8
1	16	1	9	144	9
2	32	2	Α	160	10
3	48	3	В	176	11
4	64	4	С	192	12
5	80	5	D	208	13
6	96	6	Е	224	14
7	112	7	F	240	15

INDICATORS: DRIVE STATE

Two bi-color LEDs give the state of the TE2 drive. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one TE2ow will shown.

1) Red/Blinking 2) Red/Solid

Latching fault. Operation will not resume until drive is Reset. Transient fault condition. Drive will resume operation when

3) Green/Double-Blinking =

4) Green/Slow-Blinking 5) Green/Fast-Blinking

the condition causing the fault is removed.

STO circuit active, drive outputs are Safe-Torque-Off
Drive OK but NOT-enabled. Will run when enabled.
Positive or Negative limit switch active.

6) Green/Solid

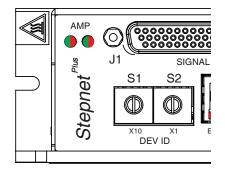
Drive will only move in direction not inhibited by limit switch. Drive OK and enabled. Will run in response to reference inputs or EtherCAT commands.

Latching Faults Defaults

Optional (programmable)
• Over-voltage

Short circuit (Internal or external) Drive over-temperature

Under-voltage


Motor over-temperature Feedback Error

Motor Phasing Error

Following Error

Command Input Fault

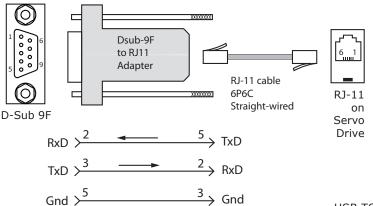
AMP LEDS & **DEVICE ID SWITCHES**

COMMUNICATIONS: RS-232 SERIAL

TE2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the TE2 RS-232 port are through J4, an RJ-11 connector. The TE2 Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

SER-CK SERIAL CABLE KIT


The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the TE2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the TE2. The connections are shown in the diagram below.

J5: RS-232 PORT

RJ-11 receptacle, 6 position, 4 contact

PIN	SIGNAL	
2	RxD	
3,4	Gnd	
5	Txd	

Don't forget to order a Serial Cable Kit SER-CK when placing your order for a TE2!

USB TO RS-232 ADAPTERS

These may or may not have the speed to work at the 115,200 Baud rate which gives the best results with CME. Users have reported that adapters using the FTDI chipset work well with CME. Recommend: Copley SER-USB-RJ11

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and TE2 series drives over an RS-232 serial connection. For instance, after basic drive configuration values have been programmed using CME, a control program can use the ASCII Interface to:

- Enable the drive in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter. After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200). ASCII parameter 0x90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:

s r0x90 115200 <enter>

Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.

Additional information can be found in the ASCII Programmers Guide on the Copley website: https://www.copleycontrols.com/en/support/ > Manuals > Manuals

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core.

This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

Refer to the Accelnet & Stepnet Plus Panels STO Manual

The information provided in the *Accelnet & Stepnet Plus Panels STO Manual* must be considered for any application using the TE2 drive's STO feature.

STO BYPASS (MUTING)

In order for the PWM outputs of the TE2 to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-IN1 and STO-IN2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

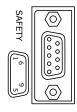
This diagram shows connections that will energize all of the optocouplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.

under control of the digital control core.

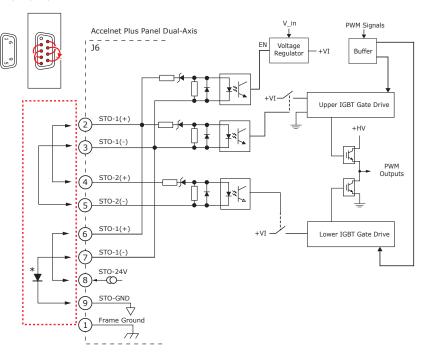
If not using the STO feature, these connections must be made in order for the TE2 to be enabled.

STO BYPASS CONNECTIONS

FUNCTIONAL DIAGRAM



Current must flow through all of the opto-couplers before the drive can be enabled


* STO bypass connections on the TE2 and Xenus XEL-XPL models are different. If both drives are installed in the same cabinet, the diode should be wired as shown to prevent damage that could occur if the STO bypass connectors are installed on the wrong drive. The diode is not required for STO bypass on the TE2 and can be replaced by a wire between pins 7 and 9.

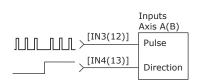
See page 30 for STO-CK-02 It is a plug with the bypass connections built-in

SAFETY CONNECTOR 16

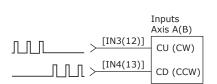
Bypass Plug Connections Jumper pins: 2-4, 3-5, 6-8, 7-9 *

CONNECTIONS

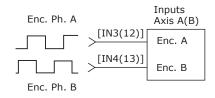
PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-2(-)		

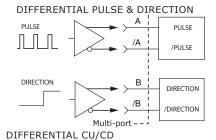

DIGITAL COMMAND INPUTS: POSITION

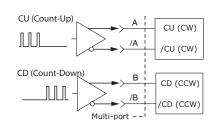
POSITION COMMAND INPUTS

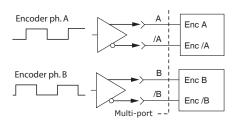

Single-ended digital position commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

For differential commands, the A & B channels of the multi-mode encoder ports are used.


SINGLE-ENDED PULSE & DIRECTION




SINGLE-ENDED CU/CD

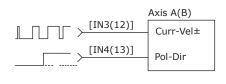

QUAD A/B ENCODER SINGLE-ENDED

QUAD A/B ENCODER DIFFERENTIAL

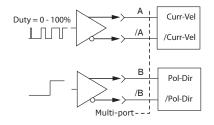
SINGLE-ENDED: IN3, 4, 12, 13

Signal	Axis A	Axis B
[IN3(12)] Pls, CU, Enc A	J1-9	J1-14
[IN4(13)] Dir, CD, Enc B	(13)] Dir, CD, Enc B J1-10 J1-1	
Signal Ground	J1-6,16 37,	
Frame Ground J1-1		-1

DIFFERENTIAL: MULTI-PORT A, /A, B, /B

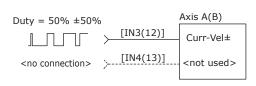

Signal	Axis A	Axis B
[Enc A] Pls, CU, Enc A	J1-36	J1-42
[Enc /A] /Pls, /CU, Enc /A	J1-21	J1-27
[Enc B] Dir, CD, Enc B	J1-35	J1-41
[Enc /B] /Dir, /CD, Enc /B	J1-20	J1-26
Signal Ground	J1-6,16 37,	
Frame Ground	J1	-1
	•	

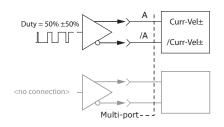
DIGITAL COMMAND INPUTS: VELOCITY, TORQUE


Single-ended digital torque or velocity commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

For differential commands, the A & B channels of the multi-mode encoder ports are used.

SINGLE-ENDED PWM & DIRECTION


DIFFERENTIAL PWM & DIRECTION


SINGLE-ENDED: IN3, 4, 12, 13

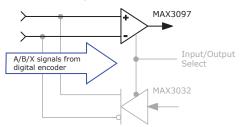
Signal	Axis A	Axis B
[IN3(12)] Curr-Vel±	J1-9	J1-14
[IN4(13)] / Curr-Vel±	J1-10	J1-15
Signal Ground	J1-6,16 37,	
Frame Ground	J1-1	

SINGLE-ENDED 50% PWM

DIFFERENTIAL 50% PWM

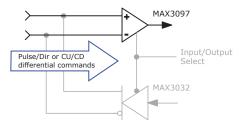
DIFFERENTIAL: MULTI-PORT A, /A, B, /B

Signal	Axis A	Axis B
[Enc A] Curr-Vel±	J1-36	J1-42
[Enc /A] /Curr-Vel±	J1-21	J1-27
[Enc B] Pol-Dir	J1-35	J1-41
[Enc /B] /Pol-Dir	J1-20	J1-26
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	J1-1	

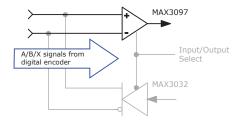


MULTI-MODE PORT AS AN INPUT

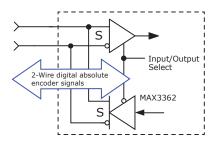
INPUT TYPES

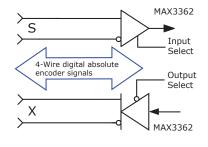

POSITION COMMAND INPUTS: DIFFERENTIAL

- Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B
- Camming Encoder A & B input

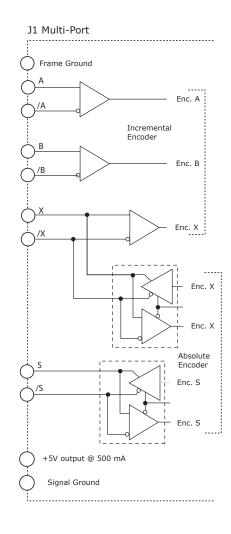

CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

- Current or Velocity & Direction
- Current or Velocity (+) & Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL


• Quad A/B/X incremental encoder

SECONDARY FEEDBACK: ABSOLUTE


- S channel: Absolute A encoders (2-wire)
 The S channel first sends a Clock signal and then
 receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire)
 The X channel sends the Clock signal to the encoder,
 which initiates data transmission from the encoder
 on the S-channel in full-duplex mode

SIGNALS & PINS

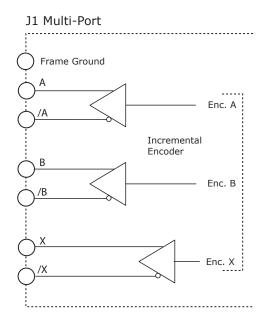
Signal	Axis A J1	Axis B J1
Pulse, CW, Encoder A	36	42
/Pulse, /CW, Encoder /A	21	27
Direction, CCW, Encoder B	35	41
/Direction, /CCW, Encoder /B	20	26
Quad Enc X, Absolute Clock	34	40
Quad Enc /X, /Absolute Clock	19	25
Enc S, Absolute (Clock) Data	33	39
Enc /S, / Absolute (Clock) Data	18	24
Signal Ground		2, 31, 37, 4
Frame Ground	:	1

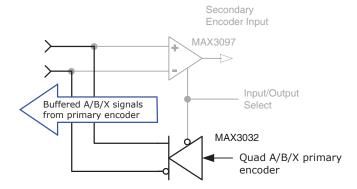
MULTI-MODE PORT AS AN OUTPUT

OUTPUT TYPES

BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

- Encoder Quad A, B, X channels
- Direct hardware connection between quad A/B/X encoder feedback and differential line drivers for A/B/X outputs

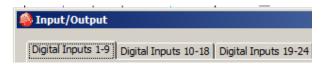

EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL

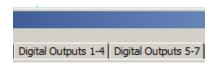

Firmware produces emulated quad A/B signals from feedback data from the following device:

• Absolute encoders

SIGNALS & PINS

Signal	Axis A J1	Axis B J1	
Encoder A	36	42	
Encoder /A	21	27	
Encoder B	35	41	
Encoder /B	20	26	
Encoder X	34	40	
Encoder /X	19	25	
Encoder S	33	39	
Encoder /S	18	24	
Signal Ground	6, 16, 22, 31, 37, 44		
Frame Ground	1		





CME DEFAULTS

These tables show the CME default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

Axis A	Config	PU/PD	Axis B	Config	PU/PD
IN1	Enable-LO		*IN10	Enable-LO	
IN2	Not Configured	+5V	*IN11		+5V
IN3		or Sgnd	*IN12	Not Configured	or Sgnd
IN4	comigarea		*IN13	Comigarea	
IN5			IN14	·	
IN6	Opto Not Configured		IN15	Opto Not Configured)
IN7			IN16		gured
IN8			IN17		
IN9	Motemp		IN18	Motemp	
IN19	J7-2	+5V	IN22	J8-2	+5V
IN20	J7-3	T3V	IN23	J8-3	T 7V
IN21	J7-4		IN24	J8-4	

Axis A	Axis B	Notes	
OUT1	OUT2	Fault Active-OFF	
OUT3			
OUT4	Not Configured		
OUT5			
OUT6	OUT7	Brake Active-HI	

Axes A, B	Notes
Analog: Reference Filter	Disabled
Vloop: Input Filter	Disabled
Vloop: Output Filter 1	Low Pass, Butterworth, 2-pole, 200 Hz
Vloop: Output Filter 2	Disabled
Vloop: Output Filter 3	Disabled
Iloop: Input Filter 1	Disabled
Iloop: Input Filter 2	Disabled
Input Shaping	Disabled

Axis A	Axis B	Notes
√	√	Short Circuit
√ √ Amp Over Temp		Amp Over Temp
√	√	Motor Over Temp
		Over Voltage
		Under Voltage
		Motor Wiring Disconnected
		STO Active

OPTIONAL FAULTS			
		Over Current (Latched)	

Home

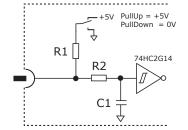
Axes A, B	Notes
Method	Set Current Position as Home

HIGH SPEED INPUTS: IN1, IN2, IN10, IN11, IN19, IN20, IN21, IN22, IN23, IN24

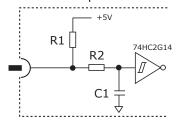
- Digital, non-isolated, high-speed
- Programmable pull-up/pull-down: IN1, IN2, IN10, IN11 Fixed pull-up to +5V: IN19, IN20, IN21, IN22, IN23, IN24
- 24V Compatible
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
	HI	VT+ = 2.5~3.5 Vdc
	LO	VT- = 1.3~2.2 Vdc
Input Voltages	VH ¹	VH = ±0.7~1.5 Vdc
	Max	+30 Vdc
	Min	0 Vdc
Pull-up/down	R1	15 kΩ
Low pass filter	R2	15 kΩ
Low pass filter	C1	100 pF
Input Current	24V	1.3 mAdc
Input Current	0V	-0.33 mAdc
Time constant	RC ²	1.5 µs


CONNECTIONS

Input	Pin		Input	Pin
IN1	J1-7		IN19	J7-2
IN2	J1-8		IN20	J7-3
IN10	J1-12		IN21	J7-4
IN11	J1-13		IN22	J8-2
	J1: 6, 16,		IN23	J8-3
Cand			IN24	J8-4
Sgnd	22, 31, 37, 44		Sgnd	J7, J8: 5, 16, 25, 26


Notes:

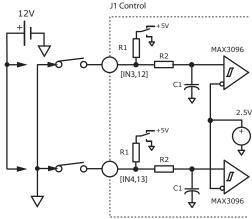
- 1) VH is hysteresis voltage
- (VT+) (VT-) 2) The R2*C2 time constant applies when input is driven by active HI/LO devices

PulUP-PulDown

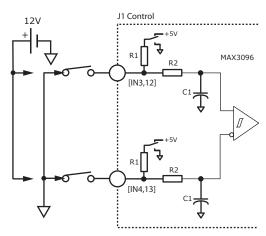
Fixed-PullUp

SINGLE-ENDED/DIFFERENTIAL INPUTS: IN3, IN4, IN12, IN13

- Digital, non-isolated, high-speed
- Progammable pull-up/pull-down
- 12V Compatible
- Single-ended or Differential
- Programmable functions


SPECIFICATIONS

Input	Data	Notes
	HI	Vin ≥ 2.7 Vdc
Input Voltages Single-ended	LO	Vin ≤ 2.3 Vdc
	VH ¹	45 mVdc typ
	HI	Vdiff ≥ +200 mVdc
Input Voltages Differential ³	LO	Vdiff ≤ -200 mVdc
	VH	±45 mVdc typ
Common mode	Vcm	0 to +12 Vdc
Pull-up/down	R1	10 kΩ
Low page filter	R2	1 kΩ
Low pass filter	C1	100 pF
Time constant	RC ²	100 ns


Notes:

- 1) VH is hysteresis voltage IN2 - IN3 or IN12 - IN13
- 2) The R2*C2 time constant applies when input is driven by active HI/LO devices)
- 3) Vdiff = AINn(+) AINn(-)n = 1 for Axis A, 2 for Axis B

SINGLE-ENDED

DIFFERENTIAL

CONNECTIONS

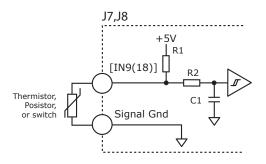
S.E.	DIFF	Pin
IN3	IN3+	J1-9
IN4	IN3-	J1-10
IN12	IN12+	J1-14
IN13	IN12-	J1-15
Sgnd		J1-6, 16, 22, 31, 37 , 44

MOTOR OVERTEMP INPUTS: IN9, IN18

- Digital, non-isolated
- Motor overtemp inputs
- 12V Compatible
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
	HI	Vin ≥ 3.5 Vdc
Input Voltages	LO	Vin ≤ 0.7 Vdc
Input Voltages	Max	+12 Vdc
	Min	0 Vdc
Pull-up/down	R1	4.99 kΩ
Innut Current	12V	1.4 mAdc
Input Current	0V	-1.0 mAdc
Low page filter	R2	10 kΩ
Low pass filter	C1	33 nF
Time constant	Te	330 µs *


* RC time constant applies when inputs are driven by active high/low devices

CONNECTIONS

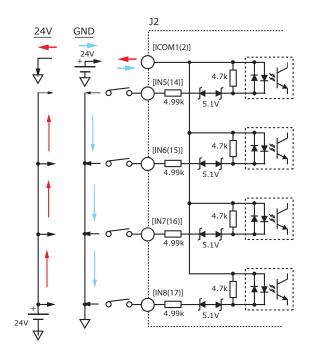
Input	Pin
IN9	J7-7
IN18	J8-7
Sgnd	J7,8-5, 16, 25, 26

MOTOR OVER TEMP INPUT

The $4.99k\Omega$ pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987, or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

BS 4999:PART 111:1987

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000


OPTO-ISOLATED INPUTS: IN5, IN6, IN7, IN8, IN14, IN15, IN16, IN17

- Digital, opto-isolated
- 2 Groups of four, each with own Common terminal
- Works with current sourcing or sinking drivers
- 24V Compatible
- · Programmable functions

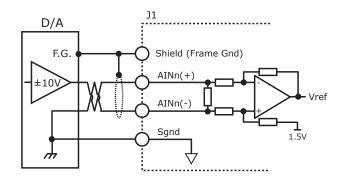
SPECIFICATIONS		
Input	Data	Notes
	HI	Vin ≥ ±10.0 Vdc *
Input Voltages	LO	Vin ≤ ±6 Vdc *
	Max	±30 Vdc *
Innut Current	±24V	±3.6 mAdc
Input Current	0V	0 mAdc

* Vdc Referenced to ICOM terminals.

CONNECTIONS			
Signal	Pins	Signal	Pins
IN5	J2-2	IN14	J2-7
IN6	J2-3	IN15	J2-8
IN7	J2-4	IN16	J2-9
IN8	J2-5	IN17	J2-18
ICOM1	J2-6	ICOM2	J2-17

ANALOG INPUTS: AIN1, AIN2

- ±10 Vdc, differential
- 12-bit resolution
- Programmable functions

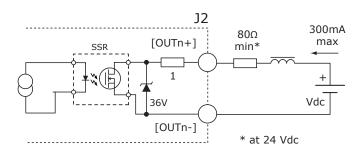

The analog inputs have a ± 10 Vdc range at 12-bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

SPECIFICATIONS

Spec	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.05 kΩ

CONNECTIONS

Signal	Pins		
Signal	Axis A	Axis B	
AIN(+)	J1-3	J1-5	
AIN(-)	J1-2	J1-4	
Sgnd	J1-6, 16, 22, 31, 37, 44		



OPTO-ISOLATED OUTPUTS: OUT1, OUT2, OUT3, OUT4, OUT5

- Digital, opto-isolated
- MOSFET output SSR, 2-terminal
- Flyback diodes for inductive loads
- 24V Compatible
- Programmable functions

SPECIFICATIONS

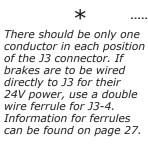
Output	Data	Notes
ON Voltage OUT(+) - OUT(-)	Vdc	0.85V @ 300 mAdc
Output Current	Iout	300 mAdc max

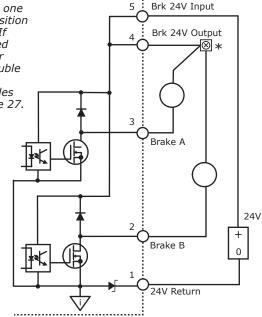
HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
OUT1~5	HI	Output SSR is ON, current flows
0011~5	LO	Output SSR is OFF, no current flows

CONNECTIONS

Signal	(+)	(-)
OUT1	J2-19	J2-10
OUT2	J2-20	J2-11
OUT3	J2-21	J2-12
OUT4	J2-22	J2-13
OUT5	J2-23	J2-14




OPTO-ISOLATED MOTOR BRAKE OUTPUTS: OUT6, OUT7

- Brake outputs
- Opto-isolated
- Flyback diodes for inductive loads
- 24V Compatible
- Connection for external 24V power supply
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRK-A,B	HI	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

CME Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI" Active = Brake is holding motor shaft (i.e. the Brake is Active)

Motor cannot move

No current flows in coil of brake

CME I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF

Stepper drive output current is zero

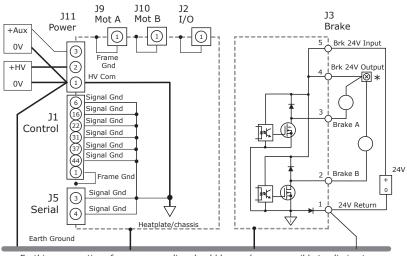
Stepper drive is disabled, PWM outputs are off

Inactive Inactive)

Brake is not holding motor shaft (i.e. the Brake is

Motor can move

Current flows in coil of brake


CME I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON Stepper drive is enabled, PWM outputs are on

Stepper drive output current is flowing

The brake circuits are optically isolated from all drive circuits and frame ground.

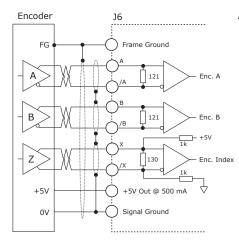
CONNECTIONS

Pin	Signal
5	Brk 24V Input
4	Brk 24V Output
3	Brake A [OUT6]
2	Brake B [OUT7]
1	24V Return

connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

This diagram shows the

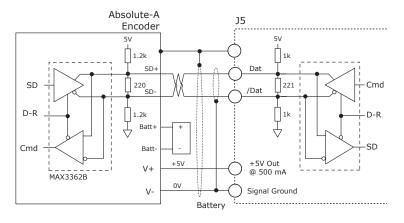
Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply 0V terminals.



FEEDBACK CONNECTIONS

QUAD A/B/X INCREMENTAL ENCODER

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark.

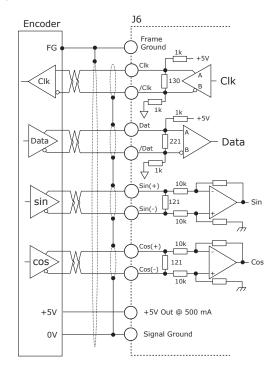

A/B/X SIGNALS

Signal	J6 Pins
Enc A	13
Enc /A	12
Enc B	11
Enc /B	10
Enc X	9
Enc /X	8
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

Sgnd = Signal Ground F.G. = Frame Gnd

SANYO DENKI ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.



ABSOLUTE-A SIGNALS

Signal	J6 Pins
Data	15
/Data	14
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog Sin/Cos channels from the same encoder. The number of position data bits is programmable as is the use of Sin/Cos channels. Use of Sin/Cos incremental signals is optional in the EnDat specification.

ENDAT SIGNALS

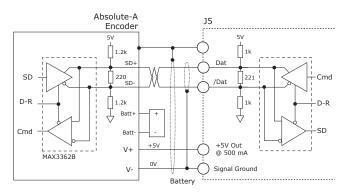
Signal	J6 Pins
Clk	9
/Clk	8
Data	15
/Data	14
Sin(+)	19
Sin(-)	18
Cos(+)	21
Cos(-)	20
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

FEEDBACK CONNECTIONS

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable.

The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.


Encoder	J6
FG •	Frame Ground 1k +5V
Clk	Clk 130 A B Clk
- Data	Dat 221 A Data
+5V	+5V Out @ 500 mA
0V	Signal Ground

SSI	BiSS	J6 Pins			
Clk	MA+	9			
/Clk	MA-	8			
Data	SL+	15			
/Data	SL-	14			
+!	5V	6, 17			
Signal Ground		5, 16, 25, 26			
Frame Gnd		1			

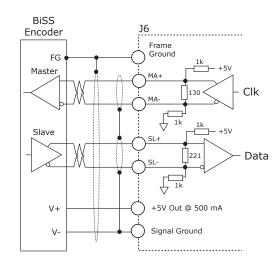
Note: Single (outer) shields should be connected at both ends (motor and drive frame grounds). Inner shields should only be connected to Signal Ground on the drive.

ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

Signal	J7,J8 Pin	
Data	15	
/Data	14	
+5V	6, 17	
Sgnd	5, 16, 25, 26	
F.G.	1	


Sgnd = Signal Ground F.G. = Frame Gnd

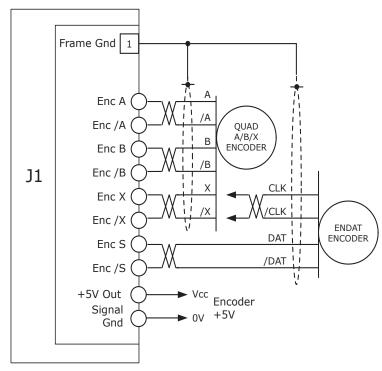
BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

Serial Synchronous Data Communication
Cyclic at high speed
2 unidirectional lines Clock and Data
Line delay compensation for high speed data transfer
Request for data generation at slaves
Safety capable: CRC, Errors, Warnings
Bus capability incl. actuators
Bidirectional

BiSS B-protocol: Mode choice at each cycle start BiSS C-protocol: Continuous mode

MULTI-PORT FEEDBACK CONNECTIONS

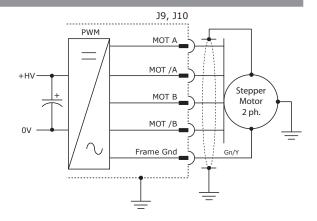

DUAL-LOOP FEEDBACK

Incremental or absolute encoders can connect to the Multi-port to function as secondary feedback for dual-loop operation. Typically, the primary encoder (J7,J8) is mounted on the motor, and the secondary encoder (J1) mounts to the load. The primary encoder is used for velocity feedback and the secondary one us used for the actual load position. The graphic shows both incremental and absolute connections. Only one encoder per axis can connect to the multi-port for dual-loop opertion.

MULTI-PORT J1 SIGNALS

Signal	Axis A	Axis B	
Enc A	36	42	
Enc /A	21	27	
Enc B	35	41	
Enc /B	20	26	
Enc X	34	40	
Enc /X	19	25	
Enc S	33	39	
Enc /S	18	24	
+5V	32	23	
Sgnd	31	22	
F.G.	1		

Stepnet Plus Panel 2-Axis


MOTOR CONNECTIONS

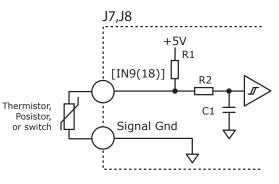
MOTOR PHASE CONNECTIONS

The drive outputs are two H-bridge PWM inverters that convert the DC buss voltage (+HV) into sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the drive. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. Further details on motor connections can be found on page 22.

MOTOR SIGNALS

Signal	J9,J10 Pin		
Mot A	5		
Mot /A	4		
Mot B	3		
Mot /B	2		
Frame Gnd	1		

MOTOR OVER TEMP INPUT

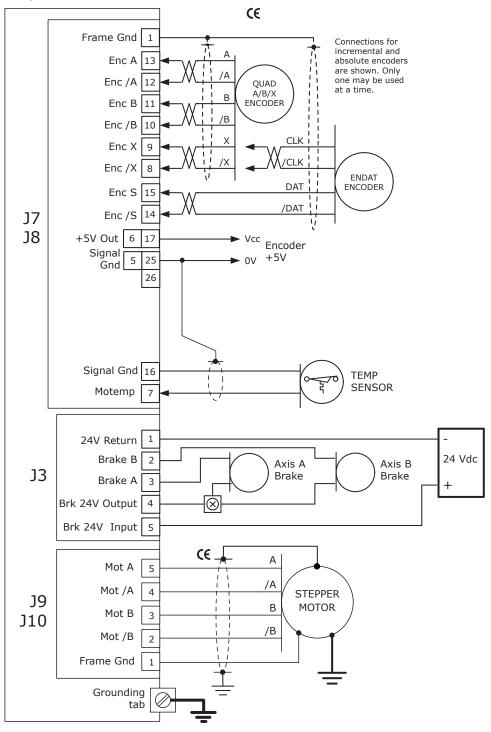

The $4.99k\Omega$ pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable. These inputs are programmable for other functions if not used as Motemp inputs. And, other inputs are programmable for the Motemp function.

MOTEMP SIGNALS

Signal	Pin
Motemp A	J7-7
Motemp B	J8-7
J7,J8 Signal Ground	5,10
Frame Gnd	12

BS 4999 SENSOR

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

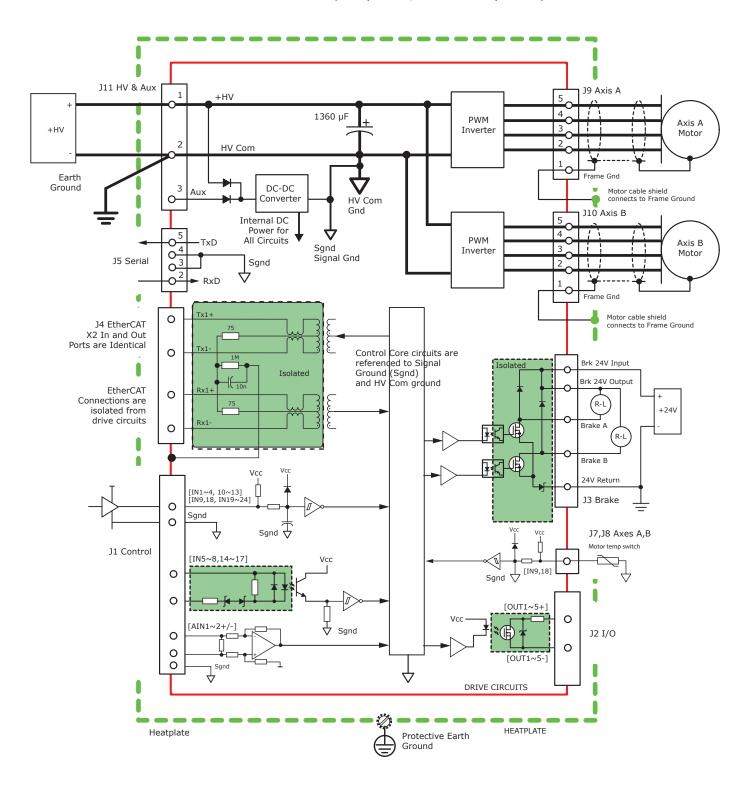


MOTOR CONNECTIONS: ENCODER

The connections shown may not be used in all installations

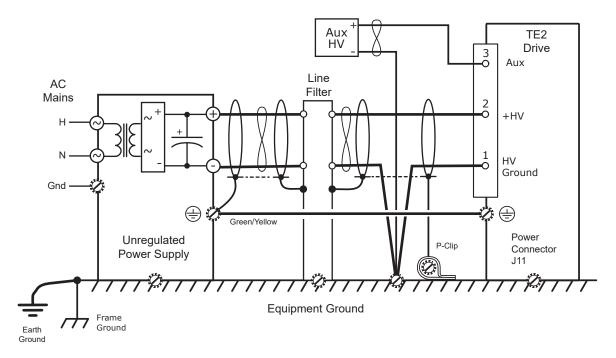
Stepnet Plus Panel 2-Axis

NOTES:


- 1) The +5VOut1 on J1-17,32 and J7-6, 17 is rated for 500 mA
 The +5VOut2 on J1-23,38 and J8-6, 17 is rated for 500 mA
 These are two independent power supplies, each with a 500 mA max output from all pins
 - 2) CE symbols indicate connections required for CE compliance.

DEVICE STRUCTURE & ISOLATION

This graphic shows the electrical structure of the drive, detailing the elements that share a common circuit common (Signal Ground, HV Com) and circuits that are isolated and have no connection to internal circuits. Note that there is no connection between the heatplate (Chassis, Frame Ground) and any drive circuits.


POWER & GROUNDING CONNECTIONS

DC POWER CONNECTIONS

- DC power must be provided by transformers that are galvanically isolated and provide reinforced insulation from the mains.
 Auto-transformers cannot be used.
- The (-) terminal of the power supply is not grounded at the power supply. It is grounded near each drive.
- Cabling to multiple drives for the +HV and 0V is best done in a "star" configuration, and not a "daisy-chain".
- The 0V, or return terminal of the DC power should be connected to frame ground near the drive power connector. From that point, a short wire can connect to the drive HV Ground.
- Cabling to the drive +HV and 0V terminals must be sized to carry the expected continuous current of the drive in the user's
 installation.
- DC power cabling should be shielded, twisted-pair for best EMI reduction. The shield should connect to the power supply frame
 ground on one end, and to the drive frame ground on the other. Adding a pigtail and ring-lug, as short as possible will provide a
 good connection of the shield at the drive.
- Motor cabling typically includes a green/yellow conductor for protective bonding of the motor frame.
 Connect as shown in the Motor Connections diagram on the following page.
- Motor cable conductors should be twisted and shielded for best EMI suppression.
- If a green/yellow grounding wire connects the motor to the drive's PE terminal, the shield pigtail and ring-lug may connect to one of the screws that mount the drive to the panel. A P-clip to ground the shield as near as possible to the drive will increase the EMI suppression of the shield. On the motor-end, the shield frequently connects to the connector shell. If the motor cable is a flying-lead from the motor, the shield may be connected to the motor frame internally.
- Braided cable shields are more effective for EMI reduction than foil shields. Double-shielded cables typically have a braided outer shield and foil shields for the internal twisted pairs. This combination is effective for both EMI reduction and signal quality of the feedback signals from analog encoders.
- Motor cable shielding is not intended to be a protective bonding conductor unless otherwise specified by the motor manufacturer.
- In double-shielded cables, the internal shielding should connect to the drive's Signal Ground on one end, and should be unconnected on the motor end.
- Single-shield feedback cables connect to the drive frame on one end, and to the motor frame on the other.
 Depending on the construction of the motor, leaving the feedback cable shield disconnected on the motor but connected on the drive end may give better results.
- The drive should be secured to the equipment frame or panels using the mounting slots. This ensures a good electrical connection for optimal EMI performance. The drive chassis is electrically conductive.

DC POWER WIRING

P-clips secure cables to a panel and provide full contact to the cable shields after the insulation has been stripped. This should be done as close to the drive as possible for best EMI attenuation.

Drive

Cint

Cint: Internal

POWER SUPPLIES, SHIELDING, REGENERATION

+HV POWER SUPPLY REQUIREMENTS

Regulated Power Supplies

- Must be over-voltage protected to 100 Vdc max when the STO (Safe Torque Off) feature of the drive is used.
- Require a diode and external capacitor to absorb regenerative energy.
- The VA rating should be greater than the actual continuous output power of the drives connected to the power supply, and adequate for the transient output power due to acceleration of motor loads.
- Must handle the internal capacitance of the drives on startup.

Unregulated Power Supplies

- No-load, high-line output voltage must not exceed 90 Vdc.
- Power supply internal capacitance adds to the drive's internal capacitance for absorption of regenerative energy.
- The VA (Volts & Amps) rating at the power supply's AC input is typically 30~40% greater than the total output power of the drives.

(+)Drive Unregulated Power Supply Cps Cint (-)Cps: Power Supply Cint: Internal

Cext

Cext: External

Regulated (+)

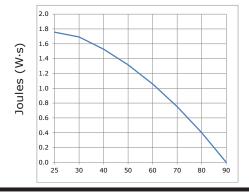
Power

Supply

- Aux HV is power that can keep the drive communications and feedback circuits active when the PWM output stage has been disabled by removing the main +HV supply.
- Useful during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety.
- Voltage range is the same as +HV.
- Powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.
- Aux HV draws no current when the +HV voltage is greater than the Aux HV voltage.

MOTOR CONNECTIONS

- Motor cable shield connects to motor frame, is grounded with a P-clip near the drive and terminates in a ring-lug that is screwed to the drive chassis by a mounting screw to the
- If provided, a green/yellow grounding wire from the motor connects to the F.G. terminal of the motor connector.


FFFDBACK CONNECTIONS

- · Cable shield connects to motor frame and to the F.G. terminal of the feedback connector.
- When double-shielding is used, the inner shields connect to the Signal Ground at the drive, and is not connected at the motor end.
- · If not provided by the motor manufacturer, feedback cables rated for RS-422 communications are recommended for digital encoders.

Feedback Enc A { Enc B { Encode Enc X ⊀ Inner Shields Sgnd Outer Shield F.G Motor Α /A Motor В /B F.G Earth P-clip Ground Frame **ENERGY ABSORPTION**

REGENERATION

This chart shows the energy absorption in W·s for the drive operating at some typical DC voltages. It is based on the internal 470 uF capacitor and would be increased by the capacitance of the external DC power supply. When the load mechanical energy is greater than these values an external regenerative energy dissipater is required, or the DC power supply capacitance can be increased to absorb the regen energy.

*1*auda<u>1</u>5

CONNECTORS & SIGNALS: FRONT PANEL

J6 SAFETY (SAFETORQUE OFF)

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-1(+)
2	STO-1(+)	7	STO-1(-)
3	STO-1(-)	8	STO-24V
4	STO-2(+)	9	STO-GND
5	STO-2(-)		

J6 TE2 CONNECTOR:

Dsub DE-09F, 9 position female receptacle

J6 CABLE CONNECTOR:

Dsub DE-09M, 9 position

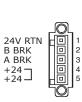
Details on J1, J2, J6, J7, and J8 cable

connectors can be found in the TE2-CK listing under the Accessories section of the last page

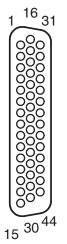
回

J2: ISOLATED CONTROL

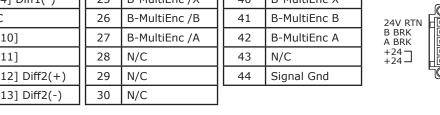
PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
9	[IN16] GPI	18	[IN17] GPI	26	n.c.
8	[IN15] GPI	17	COM2 [IN14~17]	25	n.c.
7	[IN14] GPI	16	N/C	24	n.c.
6	COM1 [IN5~8]	15	N/C	23	[OUT5+] GPI
5	[IN8] GPI	14	[OUT5-] GPI	22	[OUT4+] GPI
4	[IN7] GPI	13	[OUT4-] GPI	21	[OUT3+] GPI
3	[IN6] GPI	12	[OUT3-] GPI	20	[OUT2+] GPI
2	[IN5] GPI	11	[OUT2-] GPI	19	[OUT1+] GPI
1	Frame Ground	10	[OUT1-] GPI		


High-Density Dsub DB-26M, male plug, 26 Position

J2: CABLE CONNECTOR


High-Density Dsub DB-26F, female receptacle, 26 Position

J1: CONTROL SIGNALS

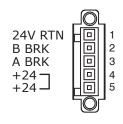

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	[AIN1-]	17	A +5Vdc Out1	32	A +5Vdc Out1
3	[AIN1+]	18	A-MultiEnc /S	33	A-MultiEnc S
4	[AIN2-]	19	A-MultiEnc /X	34	A-MultiEnc X
5	[AIN2+]	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1]	22	Signal Gnd	37	Signal Gnd
8	[IN2]	23	B +5Vdc Out2	38	B +5Vdc Out2
9	[IN3] Diff1(+)	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] Diff1(-)	25	B-MultiEnc /X	40	B-MultiEnc X
11	N/C	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN10]	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN11]	28	N/C	43	N/C
14	[IN12] Diff2(+)	29	N/C	44	Signal Gnd
15	[IN13] Diff2(-)	30	N/C		

J1: TE2 CONNECTOR

High-Density Dsub DB-44F, female receptacle, 44 Position

J1: CABLE CONNECTOR

High-Density Dsub DB-44M, male plug, 44 Position



CONNECTORS & SIGNALS: FRONT PANEL

J3: BRAKE

Pin	Signal
1	24V Return
2	Brake B [OUT7]
3	Brake A [OUT6]
4	Brk 24V Output
5	Brk 24V Input

J3: DRIVE CONNECTOR

Euro-style 3.5 mm male receptacle, 5-position Wago: MCS-MINI, 734-165/108-000

J3: CABLE CONNECTOR

Wago MCS-MINI 734-105/107-000 or 734-105/107-000

WAGO CONNECTOR TOOL

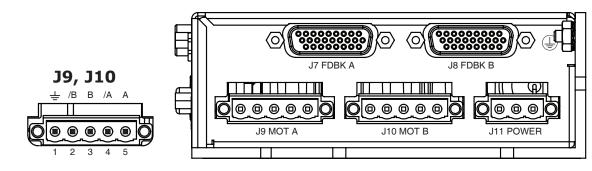
Contact opener: 734-231 operating tool

CONNECTORS & SIGNALS: END PANEL

J7, J8: AXIS A, B FEEDBACK

	•		
PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	10	A(B) Enc /B
2	[IN19(22)] A(B)	11	A(B) Enc B
3	[IN20(23)] A(B)	12	A(B) Enc /A
4	[IN21(24)] A(B)	13	A(B) Enc A
5	Signal Gnd	14	A(B) Enc /S
6	A(B) +5VOut1(2)	15	A(B) Enc S
7	[IN9(18)] A(B) Motemp	16	Signal Gnd
8	A(B) Enc /X	17	A(B) +5VOut1(2)
9	A(B) Enc X	18	N/C

PIN	SIGNAL
19	N/C
20	N/C
21	N/C
22	N/C
23	N/C
24	N/C
25	Signal Gnd
26	Signal Gnd


1 10 19

J7, J8

J7, J8: FEEDBACK

J7, J8: TE2 CONNECTOR High-Density Dsub DB-26F, female receptacle, 26 Position

J7, J8: CABLE CONNECTOR High-Density Dsub DB-26M, male plug, 26 Position

J11

OV ¬ +HV ¬Aux

J9, J10: MOTOR OUTPUTS

	Signal	Pin
	Motor Phase A	5
	Motor Phase /A	4
ı	Motor Phase B	3
ı	Motor Phase /B	2
ĺ	Frame Ground	1

J9, J10: DRIVE CONNECTORS Euro-style 5.08 mm male receptacle, 5-position Wago: MCS-MIDI, 231-565/108-000

J9, J10 CABLE CONNECTORS Wago MCS-MIDI Classic 231-305/107-000

WAGO CONNECTOR TOOL Contact opener: 231-159 operating tool

J11:+HV & AUX POWER

Signal	Pin
Aux HV	3
HV	2
HV Ground	1

J11: DRIVE CONNECTOR

Euro-style 5.08 mm male receptacle, 3-position

Wago: MCS-MIDI, 231-563/108-000

J11: CABLE CONNECTOR Wago MCS-MIDI, 231-303/107-000

WAGO CONNECTOR TOOL Contact opener: 231-159 operating tool

WIRING

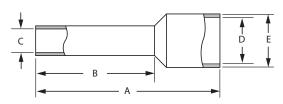
24V & BRAKE: J3

Wago MCS-MINI: 734-105/031-000, female connector; with screw flange,

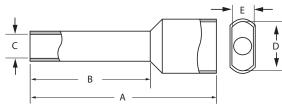
5-pole; pin spacing 3.5 mm / 0.138 in

Conductor capacity

AWG 28~16 [0.08~1.5 mm2] AWG 24~16 [0.25~1.5 mm2] 0.24~0.28 in[6~7 mm] Wago MCS-MINI: 734-231 Bare stranded: Insulated ferrule: Stripping length: Operating tool:


FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	Е	SL
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.06)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.05)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.04)	2.6 (.10)	3.1 (.12)	7.5 (.30)


FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
2 x 18	2 x 1.0	Red	Altech	2776.0	15.4 (.61)	8.2 [.32]	2.4 (.09)	3.2 (.13)	5.8 (.23)	11.0 (.43)
2 x 18	2 x 1.0	Gray	Altech	2775.0	14.6 (.57)	8.2 (.32)	2.0 (.08)	3.0 (.12)	5.5 (.22)	11.0 (.43)
2 x 20	2 x 0.75	White	Altech	2794.0	14.6 (.57)	8.2 (.32)	1.7 (.07)	3.0 (.12)	5.0 (.20)	11.0 (.43)
2 x 20	2 x 0.75	Gray	TE	966144-2	15.0 (.59)	8.0 (.31)	1.70 (.07)	2.8 (.11)	5.0 (.20)	10 (.39)
2 x 22	2 x 0.50	White	TE	966144-1	15.0 (.59)	8.0 (.31)	1.40 (.06)	2.5 (.10)	4.7 (.19)	10 (.39)

SINGLE WIRE

MOTOR OUTPUTS AND HV/AUX POWER: J9, J10 & J11

Wago MCS-MIDI Classic: 231-305/107-000 (J9, J10), 231-303/107-000 (J11), female connector; with screw flange; pin spacing 5.08 mm / 0.2 in

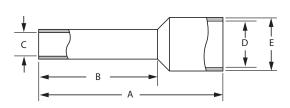
Conductor capacity

AWG 28~14 [0.08~2.5 mm2] AWG 24~16 [0.25~1.5 mm2] Bare stranded: Insulated ferrule: Stripping length: 8~9 mm

Operating Tool: Wago MCS-MIDI Classic: 231-159

J9, J10

J11


Tool

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

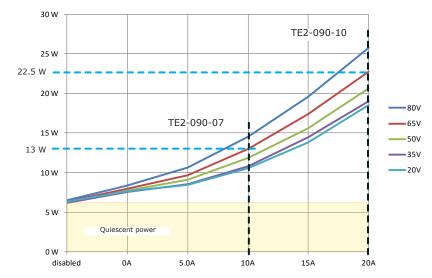
AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	Е	SL
14	2.5	Blue	Wago	216-206	15.0 (0.59)	8.0 (0.31)	2.05 (.08)	4.2 (0.17)	4.8 (0.19)	10 (0.39)
16	1.5	Black	Wago	216-204	14.0 (0.59	8.0 (0.31)	1.7 (.07)	3.5 (0.14)	4.0 (0.16)	10 (0.39)
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.055)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.047)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.039)	2.6 (.10)	3.1 (.12)	7.5 (.30)

NOTES

PNUM = Part Number SL = Stripping length Dimensions: mm (in)

THERMALS: POWER DISSIPATION

The top chart on this page shows the internal power dissipation for one axis of the TE2 under differing power supply and output current conditions. The +HV values are for the average DC voltage of the drive power supply. The lower chart shows the temperature rise vs. power dissipation under differing mounting and cooling conditions.


TOTAL POWER DISSIPATION

Use this chart to find the total power dissipation for both axes.

Examples

TE2-090-07: Power supply HV = 65 VdcAxis 1,2 currents = 5 A
Total current = 10 A
Total dissipation = 13 Watts

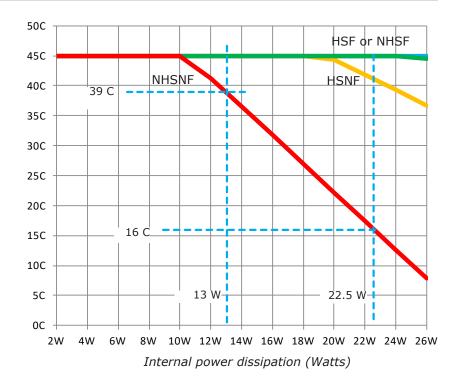
TE2-090-10: Power supply HV = 65 Vdc Axis 1,2 currents = 10 A Total current = 20 A Total dissipation = 22.5 Watts

Total continuous output current of both axes

THERMALS: MAXIMUM OPERATING TEMPERATURE VS. DISSIPATION

Use this chart to find the maximum operating temperature of the drive under differing mounting and cooling conditions.

Examples


TE2-090-07:

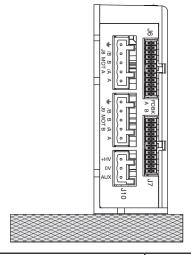
Using the 13 W value from the calculation above, draw a vertical line. This shows that 39 C is the maximum operating temperature for NHSNF, and that any of the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C.

TE2-090-10:

Using the 22.5 W value from the calculation above, draw a vertical line. This shows that 16 C is the maximum operating temperature for NHSNF. Heat sink with no fan is sufficient to 41 C, and the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C.

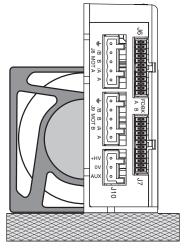
HSF = Heat Sink (with) Fan NHSF = No Heat Sink (with) Fan **HSNF** = Heat Sink No Fan NHSNF = No Heat Sink No Fan

THERMALS: MOUNTING & THERMAL RESISTANCE

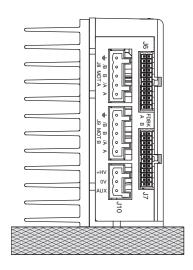

MOUNTING

Thermal data for convection-cooling with a heatsink assumes a vertical mounting of the drive on a thermally non-conducting surface. Heatsink fins run parallel to the long axis of the drive. When fan-cooling is used vertical mounting is not necessary to guarantee thermal performance of the heatsink.

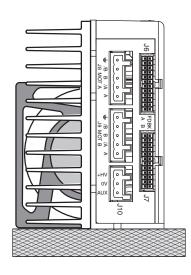
THERMAL RESISTANCE


Thermal resistance is a measure of the temperature rise of the drive heatplate due to power dissipation in the drive. It is expressed in units of °C/W where the degrees are the temperature rise above ambient.

E.g., an drive dissipating 16 W mounted with no heatsink or fan would see a temperature rise of 38.2C above ambient based on the thermal resistance of 2.39C/W. Using the drive maximum heatplate temperature of 70C and subtracting 38.2C from that would give 31.7C as the maximum ambient temperature the drive in which the drive could operate before going into thermal shutdown. To operate at higher ambient temperatures a heatsink or forced-air would be required.



NO HEATSINK, NO FAN °C/W CONVECTION 2.32



NO HEATSINK + FAN	°C/W
FORCED-AIR, 300 LFM	0.98

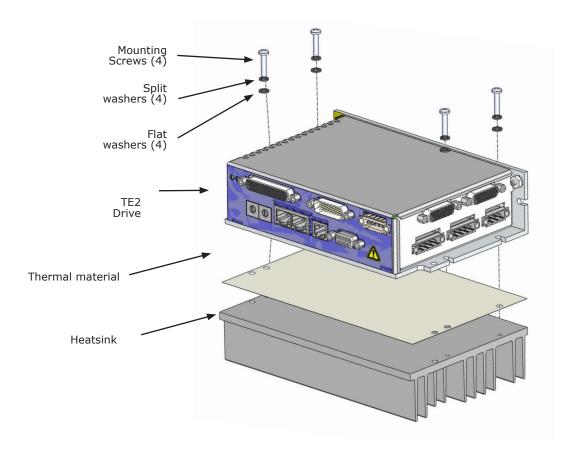
HEATSINK, NO FAN	°C/W
CONVECTION	1.28

HEATSINK + FAN	°C/W
FORCED-AIR, 300 LFM	0.61

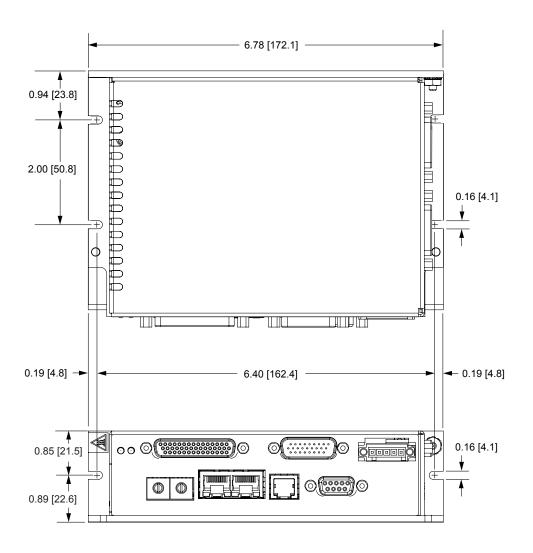
HEATSINK KIT INSTALLATION

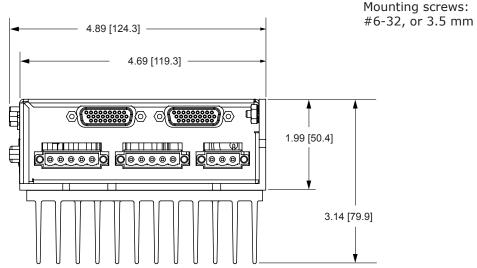
- Standard heatsink for Stepnet Plus Panel TE2
- Complete kit for user installation of the heatsink

DESCRIPTION


The TE2-HK is a kit containing a heatsink and mounting hardware for field installation of a standard heatsink onto a TE2 model stepper drive.

TE2-HK HEATSINK KIT PART LIST


Qty	Description						
1	Heat	Heatsink, standard, TE2-HS					
1	Ther	Thermal material, 4.4 x 6.8 in.					
	Kit,	Heatsink Hardware, TE2					
1	4	Washer, flat, #6					
	4	Washer, split, #6					
	4	Screw, PAN, #6-32 x 5/8 in					


INSTALLATION

- 1) Place the heatsink fins-down on a work surface. Orient the heatsink so that the edge with part number is away from you. The hole for the TE2 grounding lug should be to your left.
- 2) Remove the clear protective film from the thermal material and discard it. Place the thermal material onto the heatsink in the placement area which is marked with four white "L".
 - Apply light pressure to ensure that the thermal material is flat.
- 3) Peel the white protective layer away from the thermal material. Do this slowly from one corner so as not to lift the thermal material from the heatsink.
- 4) Align the TE2 as shown and lower onto the heatsink. If needed to adjust the position, lift it away from the thermal material and lower onto the heatsink again.
- 5) Install the four mounting screws with split and flat washers then tighten evenly. Torque to 17.8 lb-in (2.0 Nm) maximum.

DIMENSIONS: IN (MM)

ORDERING GUIDE

TE2-090-07	Stepnet Plus 2-Axis Panel EtherCAT stepper drive, 5/7 A, 90 Vdc
TE2-090-10	Stepnet Plus 2-Axis Panel EtherCAT stepper drive, 10/10 A, 90 Vdc

Example: Order one Stepnet Plus TE2 drive, 10/10 A, with connector kit, serial cable kit:

Qty Remarks

Item TE2-090-10 TE2-CK Stepnet Plus TE2 2-axis servo drive

TE2 Connector Kit Serial Cable Kit

ACCESSORIES

	Qty	Ref	Name	Description	Manufacturer P/N
TE2-CK Connector Kit	1	J11	DC HV	Plug, 3 position, 5.08 mm, female	Wago: 231-303/107-000 (Note 1)
	1			Strain relief, snap-on, 5.08 mm, 3 position, orange	Wago: 232-633
	2	J9, J10	Motor	Plug, 5 position, 5.08 mm, female	Wago: 231-305/107-000 (Note 1)
	2			Strain relief, snap-on, 5.08 mm, 4 position, orange	Wago: 232-635
	1	J9~J11	Tool	Tool, wire insertion & extraction, 231 series	Wago: 231-159
	1	J3	Brake	Plug, 5 position, 3.5 mm, female	Wago: 734-105/107-000 (Note 1)
	1			Strain relief, snap-on, 3.5 mm, 5 position, grey	Wago: 734-605
	1		Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231
	1	J6 Note 2	Safety	Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4
	9			AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9
	1			Metal Backshell, DB-9, RoHS	3M: 3357-9209
	4			Jumper, with pins crimped on both ends	Copley: 10-75177-01
	1	J1	Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001
	1			Metal Backshell, DB-25, RoHS	3M: 3357-9225
	1	J2	I/O	Connector, high-density DB-26F, 26 position, female, solder cup	Norcomp: 180-026-203L001
	2	J7, J8	Feed- back	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001
	3	J2, J7, J8		Metal Backshell, DB-15, RoHS	3M: 3357-9215
SER-CK	1	J5	RS-232	Serial Cable Kit	
TE2-NC-10	1	- J8 Netwo	Notwork	EtherCAT® network cable, 10 ft (3 m)	
TE2-NC-01	1		Network	EtherCAT® network cable, 1 ft (0.3 m)	

Note 1: For RoHS compliance, append "/RN01-0000" to the Wago part numbers listed above

Note 2: Insertion/extraction tool for J6 contacts is AMP/Tyco 91067-2 (not included in TE2-CK)

16-01443 Document Revision History

Revision	Date	Remarks	
00	March 27, 2017	Preliminary version	
02	April 19, 2017	Initial released version	
03	July 10, 2019	Removed references to encoder loss protection which is not supported	
04	August 21, 2019	Removed reference to emulated feedback in Multi-Port from Sin/Cos encoders	
05	November 5, 2020	Correction to pin numbering on brake connector J3	
06	August 24, 2021	Update with new front panel label to show brake signals	
07	March 21, 2022	Updated feedback, add BiSS and SSI	

EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Note: Specifications subject to change without notice