DIGITAL STEPPER DRIVE FOR STEPPER MOTORS

CONTROL MODES

- Profile Position-Velocity-Torque, Interpolated Position, Homing
- Camming, Gearing
- Indexer

COMMAND INTERFACE

- CANopen
- ASCII and discrete I/O
- Master encoder (Gearing/Camming)
- Stepper mode position commands: Digital: Pulse/Dir, CW/CCW, Quad A/B Analog: ±10V position
- Servo mode commands: Digital: Pulse/Dir, CW/CCW, Quad A/B
- PWM Velocity/Torque command Analog: ±10V Position/Velocity/Torque

COMMUNICATIONS

CANopen

• RS-232

FEEDBACK

Incremental Encoders

- Digital quad A/B/X
- Panasonic Incremental A Format
- Aux. quad A/B encoder / encoder out
- Absolute Encoders
- EnDat, BiSS, SSI, Absolute A

I/O DIGITAL

- 16 non-isolated, 8 isolated inputs
- 5 isolated outputs, 2 non-isolated outputs
- ANALOG
- 2 Reference Inputs, 12-bit
- SAFE TORQUE OFF (STO)
- SIL 3, Category 3, PL d
- DIMENSIONS: IN [MM]
 - 6.78 x 4.70 x 1.99 [172.1 x 119.3 x 50.4] no heatsink
 - 6.78 x 4.70 x 3.14 [172.1 x 119.3 x 79.9] with heatsink

Model	Ip	Ic	Vdc
TP2-090-07	7	5	90
TP2-090-10	10	10	90

Current ratings are for each axis

DESCRIPTION

Stepnet TP2 is a dual-axis, high-performance, DC powered drive for position and velocity control of stepper motors via CANopen. Using advanced FPGA technology, the TP2 provides a significant reduction in the cost per node in multi-axis CANopen systems.

Each of the two axes in the TP2 operate as *CANopen* nodes under DSP-402 for motion control devices. Supported modes include: Profile Position/Velocity, Interpolated Position Mode (PVT), and Homing.

In microstepping mode stepper command pulses and master encoder for camming or gearing are supported. Servo mode allows $\pm 10V$ analog Position/Velocity/Torque, and PWM Velocity/Torque control.

There are sixteen non-isolated inputs and eight opto-isolated digital inputs that are bipolar types, sourcing or sinking current into a common connection that can be tied to ground or +24V. [IN1&10] default to the drive Enable function for axes A & B, and are programmable to other functions. The other inputs are programmable. All inputs have programmable active levels. Five opto-isolated outputs [OUT1~5] have individual collector/emitter connections. Two MOSFET outputs [OUT6~7] are programmable to drive motor brakes or other functions and have internal flyback diodes for driving inductive loads.

Drive power is transformer-isolated DC from regulated or unregulated power supplies. An AuxHV input is provided for "keep-alive" operation enabling the drive PWM outputs to be completely powered down without losing position information, or communications with the control system.

GENERAL SPECIFICATIONS

Test conditions: Load =	Wye connected load: 2 mH +	- 2 Ω line-line. A	mbient temp	erature = 25°C, +HV = HV_{max}
MODEL	TP2-090-07	TP2-090-10		indx
OUTPUT POWER (EACH A)	XIS)			
Peak Current	7 (5)	10 (7.1)		Adc (Arms-sine), ±5%
Peak time Continuous current (No	0te 1) 5 (3.5)	1 10 (7.1)		Sec Adc (Arms-sine) per phase
INPUT POWER	5 (5.5)	10 (7.1)		Ade (Arms Sine) per phase
HVmin~HVmax	+14 to +90	+14 to +90		Vdc Transformer-isolated
Ipeak	14	20		Adc (1 sec) peak
Icont	10	20		Adc continuous
Aux HV	+14 to +90 Vdc Typ no load on encoder +5V outpu	+14 to +90 Vdc	th ancodor +5	Optional, not required for operation $\mathcal{O}(\mathbb{R})$
		1(5), 11 W, (Max, DO		
DIGITAL CONTROL Digital Control Loops		Current, velocity, r	position, 100%	digital loop control
Sampling rate (time)		Current loop: 16 k	Hz (62.5 μs), \	Velocity & position loops: 4 kHz (250 µs)
Bus voltage compensat			mains voltage	do not affect bandwidth
Minimum load inductan		200 µH line-line	F \	
Distributed Control Mod	: DIGITAL INPUT FUNCTIONS A	RE PROGRAMMABL)	
CANopen		Profile Position,	Profile Velocity	-torque (servo mode), Interpolated Position, Homing
Stand-alone mode				
Analog position, ve Digital position refe	locity/torque(servo mode)	±10 Vdc, 12-bit Pulse/Direction,		Dedicated differential analog input Stepper commands (2 MHz maximum rate)
		Quad A/B Encoc		2 M line/sec, 8 Mcount/sec (after quadrature)
Digital torque & vel	ocity reference (servo mode)	PWM , Polarity		PWM = 0% - 100%, Polarity = 1/0
		PWM 50% PWM frequency		PWM = 50% \pm 50%, no polarity signal required 1 kHz minimum, 100 kHz maximum
		PWM minimum		220 ns
Indexing		Up to 32 sequer	nces can be lau	inched from inputs or ASCII commands.
Camming				ored in flash memory
ASCII DIGITAL INPUTS		RS-232, DTE, 90	600~115,2001	Baud, 3-wire, RJ-11 connector
Number 24				
[IN1,2,10,11]	Digital, non-isolated, Schmitt tr	igger, 1.5 µs RC filte	er, 24 Vdc com	oatible, programmable 15kΩ pull-up/down
	to +5 Vdc/ground, $Vt + = 2.5 \sim 3$			
[IN19~21,22~24]	Vt+ = $2.5 \sim 3.5$ Vdc, VT- = $1.3 \sim$	igger, 1.5 μ s RC filte 2 2 Vdc VH = 0 7~	er, 24 Vac comj 1 5 Vdc	patible, 15k Ω pull-up to +5 Vdc/ground,
[IN3,4,12,13]	Digital, non-isolated, programm	able as single-ende	d or differentia	l pairs, 100 ns RC filter, 12 Vdc max,
	programmable pull-up/down pe	r input to +5 Vdc/gr	round,	
[IN5~8,14~17]				/in-LO ≤ 200 mVdc, Vin-HI ≥ 200 mVdc, VH = 45 mV typ olar, 2 groups of 4, each with a common terminal
[[105/08,14/017]]				iput current ± 3.6 mA @ ± 24 Vdc, typical
[IN9,18]	Default as motor overtemp inpu	ts on feedback conr	nectors, 12 Vdo	c max, programmable to other functions
	Other digital inputs are also p			
Functions				T- = 1.3~2.2 Vdc, VH = 0.7~1.5 Vdc & B Enable function and are programmable
ANALOG INPUTS	·			
Number	2			
[AIN1~2]	Differential, ±10 Vdc, 5 k Ω input	t impedance, 12-bit	resolution	
SAFE TORQUE OFF (STO)				
Function Standard	PWM outputs active and current Designed to IEC-61508-1, IEC-6			vhen the STO function is asserted
Safety Integrity Level	SIL 3, Category 3, Performance	level d		
Inputs	2 two-terminal: STO_IN1+,STO			
Type	Opto-isolators, 24V compatible,		r open, Vin-HI	≥ 15.0 Vdc,
Input current (typical) Response time	STO_IN1: 9.0 mA, STO_IN2: 4.3 2 ms (IN1, IN2) from Vin ≤6.0 V		of energy suppl	ied to motor
Reference	Complete information and sp	ecifications are in	the Accelnet	& Stepnet Plus Panels STO Manual
DIGITAL OUTPUTS				
Number	7			
[OUT1~5] [OUT6~7]	Opto-isolated SSR, two-terminal Opto-isolated MOSFET, default a			ed impulse \geq 800 V, series 1 Ω resistor
[0010:07]	1 Adc max, flyback diodes to +2			
	Programmable for other function			
RS-232 PORT				
Signals				ctor, non-isolated, common to Signal Ground
Mode Protocol	Full-duplex, DTE serial communi Binary and ASCII formats	cation port for drive	e secup and cor	11101, 3,000 to 113,200 Bana
CAN PORT				
Signals	CANH, CANL, CAN GND in 8-po	sition dual RJ-45 stv	yle modular co	nnector, wired as per CAN Cia DR-303-1, V1.1
Format	CAN V2.0b physical layer for hig	h-speed connection		,,
Data	CANopen Device Profile DSP-40			ID kite sveilekle se
Node-ID selection	16 position rotary switches on f digital inputs or programmable			
NOTES:	angled inputs of programmable	to hash memory (7-	Sit dual essility	
	ir required for continuous current	: rating		
,		2		

GENERAL SPECIFICATIONS

DC POWER OUTPUTS	
Number: Ratings	2: +5 Vdc, 500 mA max each output, thermal and short-circuit protected
Connections	Axis A: J1-17, J1-32, J7-6, J7-17; combined current from these pins cannot exceed 500 mA
	Axis B: J1-23, J1-38, J8-6, J8-17; combined current from these pins cannot exceed 500 mA
INDICATORS	
AMP	Bicolor LED, drive state indicated by color, and blinking or non-blinking condition
RUN ERR	Green LED, status of CANopen finite-state-automaton (FSA) Red LED, shows errors due to time-outs, unsolicited state changes, or local errors
L/A	Green LED, Link/Act, shows the state of the physical link and activity on the link (CANopen connection)
	RUN, ERR, and L/A LED colors and blink codes conform to ETG.1300 S(R) V1.1.0
PROTECTIONS	
HV Overvoltage	+HV >+90 Vdc Drive outputs turn off until +HV < +90 Vdc
HV Undervoltage	+HV < +14 Vdc Drive outputs turn off until +HV > +14 Vdc
Drive over temperature	Heat plate > 70°C. Drive outputs turn off
Short circuits	Output to output, output to ground, internal PWM bridge faults
I ² T Current limiting	Programmable: continuous current, peak current, peak time
Motor over temperature	Digital inputs programmable to detect motor temperature switch
MECHANICAL & ENVIRONMENTAL	
Size IN [MM]	6.78 x 4.70 x 1.99 [172.1 x 119.3 x 50.4] without heatsink
	6.78 x 4.70 x 3.14 [172.1 x 119.3 x 79.9] with heatsink
Weight LB[KG] Ambient temperature	1.5 [0.68] without heatsink, 2.75 [1.25] with heatsink 0 to +45C operating, -40 to +85C storage
Humidity	0 to 95%, non-condensing
Vibration	2 g pak, 10~500 Hz (sine), IEC60068-2-6
Shock	10 g, 10 ms, half-sine pulse, IEC60068-2-27
Contaminants	Pollution degree 2
Environment	IEC 60068-2
Cooling	Heat sink and/or forced air cooling required for continuous power output
AGENCY STANDARDS CONFOR	MANCE
Standards and Directives	
Functional Safety	
	C 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3)
	2/EC (Machinery)
	49-1/Cor. 1:2009 (Cat 3, PL d) 00-5-2 (SIL3)
Product Safety	
Directive 2014/3 IEC 6180	5/EU (Low Voltage)
	1
EMC	
Directive 2014/3	
IEC 6180	Certain Hazardous Substances (RoHS)
	Certain Hazardous Substances (RoHS)
Directive 2011/6	5/EU (RoHS II)
Approvals	Fundational of
UL and cUL recognized co	
UL 61800-5-1, 1	
TÜV SÜD Functional Sai	
IEC 61508-1, IEC IEC 13840 1/Co	C 61508-2, IEC 61508-3, IEC 61508-4 (SIL 3) r. 1:2009 (Cat 3, PL d)
150 15049-1/00	. 1.2007 (cut 5, 1 2 d)

GENERAL SPECIFICATIONS

FEEDBACK Incremental:	
Digital Incremental Encoder	Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required) 5 MHz maximum line frequency (20 M counts/sec) MAX3094 differential line receiver with 121 Ω terminating resistor between A & /A, B & /B inputs X & /X inputs have 130 Ω terminating resistor, S & /S inputs have 221 Ω terminating resistor X & S inputs have 1 k Ω pull-ups to +5V, /X & /S inputs have 1 k Ω pull-down to ground
Absolute:	
EnDat Absolute A	Serial data and clock signals (DATA, /DATA, CLK, /CLK), differential, 121 Ω inputs Tamagawa Absolute A, Panasonic Absolute A Format, Sanyo Denki Absolute A SD+, SD- (S, /S) signals, 2.5 or 4 MHz, 2-wire half-duplex communication Status data for encoder operating conditions and errors
MULTI-MODE ENCODER PORT	
As Input	Digital quadrature encoder (A, /A, B, /B, X, /X), 5 MHz maximum line frequency (20 M counts/sec), MAX3094 line receiver, 1.5 kΩ pull-ups to +5V on X & S inputs, 1.5 kΩ pull-downs to Sgnd on /X & /S inputs Digital absolute encoder (Clk, /Clk, Dat, /Dat) half or full-duplex operation, S & X inputs are used for absolute encoder interface
As Emulated Output	Quadrature encoder emulation with programmable resolution to 4096 lines (65,536 counts) per rev from absolute encoders A, /A, B, /B, from MAX3032 differential line driver, X, /X, S, /S from MAX3362 differential line driver
As Buffered Output	Digital A/B/X encoder feedback signals from primary quad encoder are buffered (see line drives above)

CANOPEN COMMUNICATIONS

Based on the CAN V2.0b physical layer, a robust, two-wire communication bus originally designed for automotive use where low-cost and noise-immunity are essential, CANopen adds support for motion-control devices and command synchronization. The result is a highly effective combination

CANOPEN CONNECTIONS

Stepnet Plus uses the CAN physical layer signals CAN_H, CAN_L, and CAN_GND for connection, and CANopen protocol for communication. Before installing the drive in a CAN

CANOPEN LEDS (ON RJ-45 CONNECTORS)

RUN Green: Shows the state of the FSA (Finite State Automaton)

- Off Init = Pre-operational Blinkina =
- Single-flash Safe-operational =
- = Operational On
- ERR Red: Shows errors such as watchdog timeouts and unsolicited state changes in the TP2 due to local errors.
 - CANopen communications are working correctly Off =
 - = Invalid configuration, general configuration error Blinking
 - Single Flash = Local error, slave has changed CANopen state autonomously
 - Double Flash = PDO or CANopen watchdog timeout, or an application watchdog timeout has occurred
- Green: Shows the state of the physical link and activity on the link. L/A

oreen onon	o the stat	ce or ene priy	Sicul mill and accivicy of
A green LED	indicates	the state of	the CANopen network:
LED	Link	Activity	Condition
ON	Yes	No	Port Open
Flickering	Yes	Yes	Port Open with activity
Off	No	(N/A)	Port Closed

CANopen DEVICE ID (NETWORK ADDRESS)

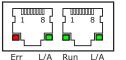
In a CANopen network, nodes are assigned Node-IDs $1 \sim 127$. Node-ID 0 is reserved for the CAN bus master. In the TP2, the node address is provided by two 16-position rotary switches with hexadecimal encoding. These can set the address of the drive A-axis from $0x01\sim0x7E$ ($1\sim126$ decimal). The B-axis will have an address of the A-axis + 1. The chart shows the decimal values of the hex settings of each switch. In the TP2, this is provided by two 16-position rotary switches with hexadecimal encoding. These can set the Device ID of the drive from 0x00~0xFF (0~255 decimal). The chart shows the decimal values of the hex settings of each switch.

Example 1: Find the switch settings for decimal Device ID 107:

1) Find the highest number in the x10 column that is less than 107 and

- set x10 to the hex value in the same row: 96 < 107 and 112 > 107, so x10 = 96 = Hex 6
- 2) Subtract 96 from the desired Device ID to get the decimal value for the switch x1 and set it to the Hex value in the same row: x1 = (107 - 96) = 11 = Hex B
- Result: X10 = 6, X1 = B, DeviceID = 0x6B (107)

INDICATORS: DRIVE STATE


Two bi-color LEDs give the state of the TP2 drive. Colors do not alternate, and can be solid ON or blinking. When multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared the next one below will shown.

Which that contaition is cical c	a the next c					
1) Red/Blinking	= Latching	fault. Operation will not resume until drive is Reset			P LEDS 8	
2) Red/Solid		t fault condition. Drive will resume operation when lition causing the fault is removed.			VICE ID	
3) Green/Double-Blinking	= STO circ	uit active, drive outputs are Safe-Torque-Off		510	TICHES	
4) Green/Slow-Blinking	= Drive Ol	K but NOT-enabled. Will run when enabled.				
5) Green/Fast-Blinking		or Negative limit switch active.		A		
	Drive wi	Il only move in direction not inhibited by limit switch	· 🦛	II AMP		
Green/Solid		K and enabled. Will run in response to			()	000000000
	referenc	e inputs or CANopen commands.				0000000
Latching Faults				<u>ه</u>	J1	SIGNAL
Defaults		Optional (programmable)		[] <u> </u>		
 Short circuit (Internal o 	r external)			et	S1	S2 🗖
 Drive over-temperature 	1	Under-voltage		1		
 Motor over-temperature 	Э	 Motor Phasing Error 			\square	
 Feedback Error 		 Command Input Fault 		e l		
 Following Error 				t l		

systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

of data-rate and low cost for multi-axis motion control

network, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are allowed on a single CAN bus.

J4: CANopen PORTS RJ-45 receptacles,

8 position, 4 contact

DEVICE ID -

X1

SS

п

X10

(D)

5

PIN	SIGNAL
8	CAN_V+
7	GND
6	CAN_SHLD
5	THRU
4	THRU
3	CAN_GND
2	CAN_L
1	CAN_H

CANopen Device ID Switch Decimal values

Set	x10	x1	Set	x10	x1
Hex	D	ec	Hex	D	ec
0	0	0	8	128	8
1	16	1	9	144	9
2	32	2	А	160	10
3	48	3	В	176	11
4	64	4	С	192	12
5	80	5	D	208	13
6	96	6	Е	224	14
7	112	7	F	240	15

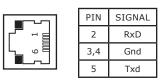
Ś

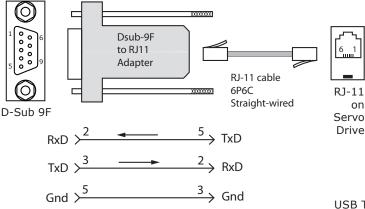
X10 DEV ID

COMMUNICATIONS: RS-232 SERIAL

TP2 is configured via a three-wire, full-duplex DTE RS-232 port that operates from 9600 to 115,200 Baud, 8 bits, no parity, and one stop bit. Signal format is full-duplex, 3-wire, DTE using RxD, TxD, and Gnd. Connections to the TP2 RS-232 port are through J4, an RJ-11 connector. The TP2 Serial Cable Kit (SER-CK) contains a modular cable, and an adapter that connects to a 9-pin, Sub-D serial port connector (COM1, COM2, etc.) on PC's and compatibles.

SER-CK SERIAL CABLE KIT


The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector on the TP2. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses common modular cable to connect to the TP2. The connections are shown in the diagram below.


J5: RS-232 PORT

After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been

established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200).

RJ-11 receptacle, 6 position, 4 contact

Don't forget to order a Serial Cable Kit SER-CK when placing your order for a TP2!

USB TO RS-232 ADAPTERS

These may or may not have the speed to work at the 115,200 Baud rate which gives the best results with CME. Users have reported that adapters using the FTDI chipset work well with CME Recommend: Copley SER-USB-RJ11

ASCII COMMUNICATIONS

The Copley ASCII Interface is a set of ASCII format commands that can be used to operate and monitor Copley Controls Accelnet, Stepnet, and TP2 series drives over an RS-232 serial connection. For instance, after basic drive configuration values have been programmed using CME, a control program can use the ASCII Interface to:

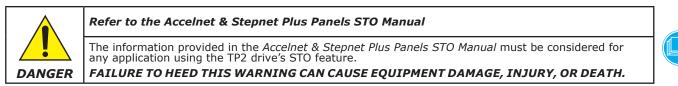
- Enable the drive in Programmed Position mode.
- Home the axis.
- Issue a series of move commands while monitoring position, velocity, and other run-time variables.

The Baud rate defaults to 9,600 after power-on or reset and is programmable up to 115,200 thereafter. After power-on, reset, or transmission of a Break character, the Baud rate will be 9,600. Once communication has been established at this speed, the Baud rate can be changed to a higher rate (19,200, 57,600, 115,200). ASCII parameter 0x90 holds the Baud rate data. To set the rate to 115,200 enter this line from a terminal:

s r0x90 115200 <enter>

Then, change the Baud rate in the computer/controller to the new number and communicate at that rate.

Additional information can be found in the ASCII Programmers Guide on the Copley website: https://www.copleycontrols.com/en/support/ > Manuals



SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from being operated by the digital control core.

This provides a positive OFF capability that cannot be overridden by the control firmware, or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the on/off state of the PWM outputs.

INSTALLATION

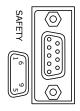
STO BYPASS (MUTING)

In order for the PWM outputs of the TP2 to be activated, current must be flowing through all of the opto-couplers that are connected to the STO-IN1 and STO-IN2 terminals of J6, and the drive must be in an ENABLED state. When the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.

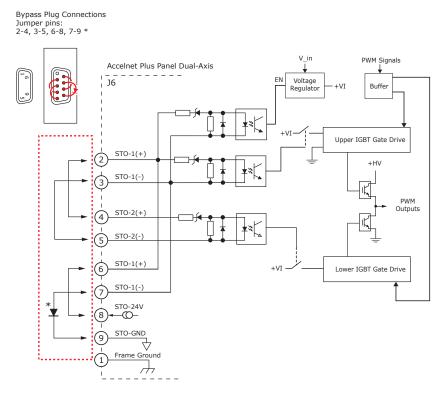
This diagram shows connections that will energize all of the optocouplers from an internal current-source. When this is done the STO feature is overridden and control of the output PWM stage is under control of the digital control core.

If not using the STO feature, these connections must be made in order for the TP2 to be enabled.

FUNCTIONAL DIAGRAM



Current must flow through all of the opto-couplers before the drive can be enabled


* STO bypass connections on the TP2 and Xenus XEL-XPL models are different. If both drives are installed in the same cabinet, the diode should be wired as shown to prevent damage that could occur if the STO bypass connectors are installed on the wrong drive. The diode is not required for STO bypass on the TP2 and can be replaced by a wire between pins 7 and 9.

> See page 30 for STO-CK-02 It is a plug with the bypass connections built-in

SAFETY CONNECTOR J6

STO BYPASS CONNECTIONS

CONNECTIONS

Р	PIN	SIGNAL	PIN	SIGNAL
	1	Frame Gnd	6	STO-IN1+
	2	STO-IN1+	7	STO-IN1-
	3	STO-IN1-	8	STO-Bypass
	4	STO-IN2+	9	STO-Gnd
	5	STO-IN2-		

PUI SE

ΠΠ

DIRECTION

DIGITAL COMMAND INPUTS: POSITION

POSITION COMMAND INPUTS

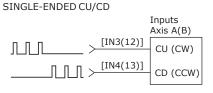
SINGLE-ENDED PULSE & DIRECTION

[[N3(12)]

Single-ended digital position commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.

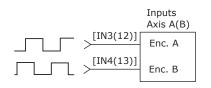
Inputs Axis A(B)

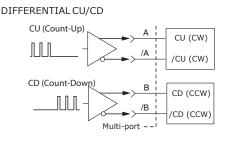
Pulse


Direction

For differential commands, the A & B channels of the multi-mode encoder ports are used.

DIFFERENTIAL PULSE & DIRECTION


SINGLE-ENDED: IN3, 4, 12, 13


Signal	Axis A	Axis B
[IN3(12)] Pls, CU, Enc A	J1-9	J1-14
[IN4(13)] Dir, CD, Enc B	J1-10	J1-15
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	J1-1	

∑[IN4(13)]

QUAD A/B ENCODER SINGLE-ENDED

Multi-port -

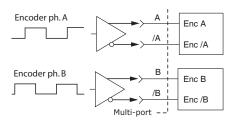
A

/A

В

/B

PULSE

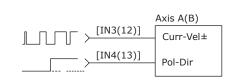

/PULSE

DIRECTION

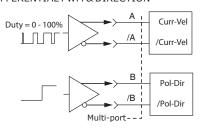
/DIRECTION

encoder ports are used.

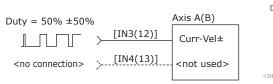
QUAD A/B ENCODER DIFFERENTIAL

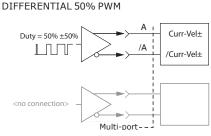

DIFFERENTIAL: MULTI-PORT A, /A, B, /B

Signal	Axis A	Axis B
[Enc A] Pls, CU, Enc A	J1-36	J1-42
[Enc /A] /Pls, /CU, Enc /A	J1-21	J1-27
[Enc B] Dir, CD, Enc B	J1-35	J1-41
[Enc /B] /Dir, /CD, Enc /B	J1-20	J1-26
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	J1-1	


DIGITAL COMMAND INPUTS: VELOCITY, TORQUE

Single-ended digital torque or velocity commands must be sourced from devices with active pull-up and pull-down to take advantage of the high-speed inputs.


SINGLE-ENDED PWM & DIRECTION



DIFFERENTIAL PWM & DIRECTION

SINGLE-ENDED 50% PWM

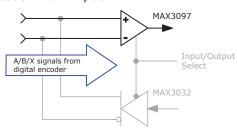
SINGL	E-ENDE	D: IN3	, 4,	12,	13

For differential commands, the A & B channels of the multi-mode

Signal	Axis A	Axis B
[IN3(12)] Curr-Vel±	J1-9	J1-14
[IN4(13)] / Curr-Vel±	rr-Vel± J1-10 J1-1	
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	Ground J1-1	

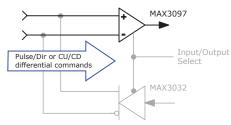
DIFFERENTIAL: MULTI-PORT A, /A, B, /B

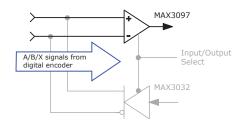
Signal	Axis A	Axis B
[Enc A] Curr-Vel±	J1-36	J1-42
[Enc /A] /Curr-Vel±	J1-21	J1-27
[Enc B] Pol-Dir	J1-35	J1-41
[Enc /B] /Pol-Dir	J1-20	J1-26
Signal Ground	J1-6,16,22,31, 37,44	
Frame Ground	J1-1	


MULTI-MODE PORT AS AN INPUT

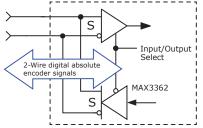
INPUT TYPES

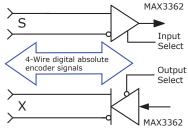
POSITION COMMAND INPUTS: DIFFERENTIAL


- Pulse & Direction
- CW & CCW (Clockwise & Counter-Clockwise)
- Encoder Quad A & B


CURRENT or VELOCITY COMMAND INPUTS: DIFFERENTIAL

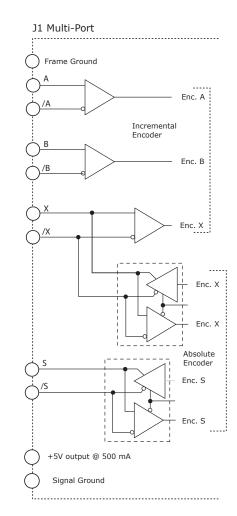
- Current or Velocity & Direction
- Current or Velocity (+) & Current or Velocity (-)


SECONDARY FEEDBACK: INCREMENTAL


Quad A/B/X incremental encoder

SECONDARY FEEDBACK: ABSOLUTE

- S channel: Absolute A encoders (2-wire) The S channel first sends a Clock signal and then receives Data from the encoder in half-duplex mode.
- S & X channels: SSI, BiSS, EnDat encoders (4-wire)
 The X channel sends the Clock signal to the encoder, which initiates data transmission from the encoder on the S-channel in full-duplex mode



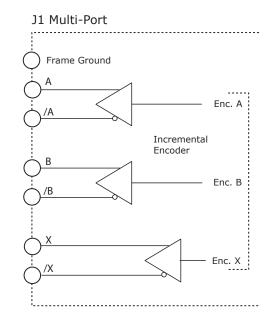
encoder signals

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-01444 Rev 07

SIGNALS & PINS

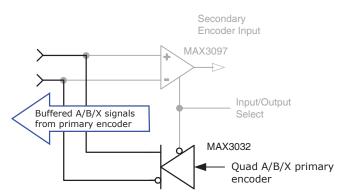
Signal	Axis A J1	Axis B J1
Pulse, CW, Encoder A	36	42
/Pulse, /CW, Encoder /A	21	27
Direction, CCW, Encoder B	35	41
/Direction, /CCW, Encoder /B	20	26
Quad Enc X, Absolute Clock	34	40
Quad Enc /X, /Absolute Clock	19	25
Enc S, Absolute (Clock) Data	33	39
Enc /S, / Absolute (Clock) Data	18	24
Signal Ground	6, 16, 22, 31, 37, 44	
Frame Ground		1

MULTI-MODE PORT AS AN OUTPUT


OUTPUT TYPES

BUFFERED FEEDBACK OUTPUTS: DIFFERENTIAL

- Encoder Quad A, B, X channels
- Direct hardware connection between quad A/B/X encoder feedback and differential line drivers for A/B/X outputs


EMULATED FEEDBACK OUTPUTS: DIFFERENTIAL Firmware produces emulated quad A/B signals from feedback

- data from the following devices:
- Absolute encoders

SIGNALS & PINS

Signal	Axis A J1	Axis B J1	
Encoder A	36	42	
Encoder /A	21	27	
Encoder B	35	41	
Encoder /B	20	26	
Encoder X	34	40	
Encoder /X	19	25	
Encoder S	33	39	
Encoder /S	18	24	
Signal Ground	6, 16, 22, 31, 37, 44		
Frame Ground	1		

CME DEFAULTS

These tables show the CME default settings. They are user-programmable and the settings can be saved to non-volatile flash memory.

🙆 Input/Output

Digital Inputs 1-9 Digital Inputs 10-18 Digital Inputs 19-24

Axis A	Config	PU/PD	Axis B	Config	PU/PD
IN1	Enable-LO		*IN10 Enable-LO		
IN2	Not O	+5V	*IN11		+5V
IN3		Sgnd	*IN12	Not Configured	or Sgnd
IN4	eega.ea	-	*IN13	- comigai ca	-
IN5			IN14		
IN6	Opto		IN15	Opto	
IN7	Not Config	Not Configured		Not Config	gured
IN8			IN17		
IN9	Motemp		IN18	Motemp	
IN19	J7-2	+5V	IN22	J8-2	+5V
IN20	J7-3	+30	IN23	J8-3	+30
IN21	J7-4		IN24	J8-4	

Digital Outputs 1-4 Digital Outputs 5-7

Axis A	Axis B	Notes	
OUT1	OUT2	Fault Active-OFF	
OUT3			
OUT4	Not Configured		
OUT5			
OUT6	OUT7	Brake Active-HI	

🐴 Filter Config	uration			
Filter Settings	Analog	V Loop	I Loop	Input Shaping

Axes A, B	Notes
Analog: Reference Filter	Disabled
Vloop: Input Filter	Disabled
Vloop: Output Filter 1	Low Pass, Butterworth, 2-pole, 200 Hz
Vloop: Output Filter 2	Disabled
Vloop: Output Filter 3	Disabled
Iloop: Input Filter 1	Disabled
Iloop: Input Filter 2	Disabled
Input Shaping	Disabled

Home

Axes A, B	Notes
Method	Set Current Position as Home

Fault Configuration				
Latch Fault				
Axis A	Axis B	Notes		
\checkmark	\checkmark	Short Circuit		
\checkmark	\checkmark	Amp Over Temp		
\checkmark	\checkmark	Motor Over Temp		
	Over Voltage			
	Under Voltage			
Motor Wiring Disconnected				
OPTIONAL FAULTS				
Over Current (Latched)				

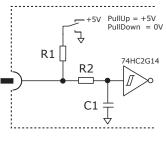
HIGH SPEED INPUTS: IN1, IN2, IN10, IN11, IN19, IN20, IN21, IN22, IN23, IN24

Notes:

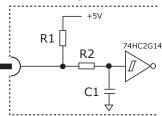
1) VH is hysteresis voltage

- Digital, non-isolated, high-speed
- Programmable pull-up/pull-down: IN1, IN2, IN10, IN11 Fixed pull-up to +5V: IN19, IN20, IN21, IN22, IN23, IN24
- 24V Compatible
- Programmable functions

SPECIFICATIONS


Input	Data	Notes
	HI	VT+ = 2.5~3.5 Vdc
	LO	VT- = 1.3~2.2 Vdc
Input Voltages	VH1	$VH = \pm 0.7 \sim 1.5 Vdc$
	Max	+30 Vdc
	Min	0 Vdc
Pull-up/down	R1	15 kΩ
Low page filter	R2	15 kΩ
Low pass filter	C1	100 pF
Innut Current	24V	1.3 mAdc
Input Current	0V	-0.33 mAdc
Time constant	RC ²	1.5 µs

CONNECTIONS					
Input	Pin		Input	Pin	
IN1	J1-7		IN19	J7-2	
IN2	J1-8		IN20	J7-3	
IN10	J1-12		IN21	J7-4	
IN11	J1-13		IN22	J8-2	
		IN23	J8-3		
Canad	J1: 6, 16,		IN24	J8-4	
Sgnd	22, 31, 37, 44		Sgnd	J7, J8: 5, 16, 25, 26	


(VT+) - (VT-) 2) The R2*C2 time constant applies when

input is driven by active HI/LO devices

PulUP-PulDown

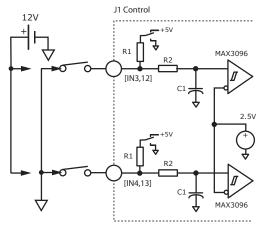
Fixed-PullUp

SINGLE-ENDED/DIFFERENTIAL INPUTS: IN3, IN4, IN12, IN13

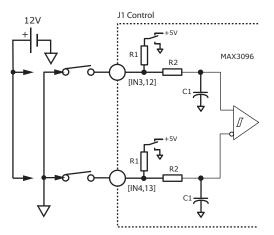
- Digital, non-isolated, high-speed
- Progammable pull-up/pull-down
- 12V Compatible
- Single-ended or Differential
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
	HI	Vin ≥ 2.7 Vdc
Input Voltages Single-ended	LO	Vin ≤ 2.3 Vdc
enigie enided	VH ¹	45 mVdc typ
	HI	$Vdiff \ge +200 mVdc$
Input Voltages Differential ³	LO	Vdiff ≤ -200 mVdc
	VH	±45 mVdc typ
Common mode	Vcm	0 to +12 Vdc
Pull-up/down	R1	10 kΩ
Low pass filter	R2	1 kΩ
	C1	100 pF
Time constant	RC ²	100 ns


Notes:

- 1) VH is hysteresis voltage
- IN2 IN3 or IN12 IN13 2) The R2*C2 time constant
- applies when input is driven by active HI/LO devices)
- 3) Vdiff = AINn(+) AINn(-) n = 1 for Axis A, 2 for Axis B


CONNECTIONS

DIFF	Pin
IN3+	J1-9
IN3-	J1-10
IN12+	J1-14
IN12-	J1-15
nd	J1-6, 16, 22, 31, 37 , 44
	IN3+ IN3- IN12+ IN12-

SINGLE-ENDED

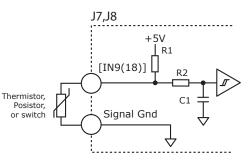
DIFFERENTIAL

MOTOR OVERTEMP INPUTS: IN9, IN18

- Digital, non-isolated
- Motor overtemp inputs
- 12V Compatible
- Programmable functions

SPECIFICATIONS

Input	Data	Notes
	HI	Vin ≥ 3.5 Vdc
	LO	Vin ≤ 0.7 Vdc
Input Voltages	Max	+12 Vdc
	Min	0 Vdc
Pull-up/down	R1	4.99 kΩ
	12V	1.4 mAdc
Input Current	0V	-1.0 mAdc
Low pass filter	R2	10 kΩ
Low pass men	C1	33 nF
Time constant	Те	330 µs *


* RC time constant applies when inputs are driven by active high/low devices

CONNECTIONS

Input	Pin
IN9	J7-7
IN18	J8-7
Sgnd	J7,8-5, 16, 25, 26

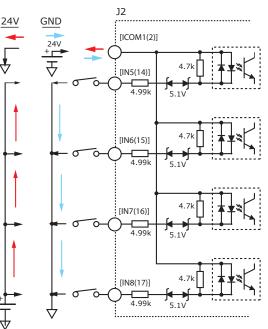
MOTOR OVER TEMP INPUT

The 4.99k Ω pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987, or switches that open/close indicating a motor over-temperature condition. The active level is programmable.

BS 4999:PART 111:1987

Property	Ohms
Resistance in the temperature range 20°C to +70°C	60~750
Resistance at 85°C	≤1650
Resistance at 95°C	≥3990
Resistance at 105°C	≥12000

OPTO-ISOLATED INPUTS: IN5, IN6, IN7, IN8, IN14, IN15, IN16, IN17


- Digital, opto-isolated
- 2 Groups of four, each with own Common terminal
- Works with current sourcing or sinking drivers
- 24V Compatible
- Programmable functions

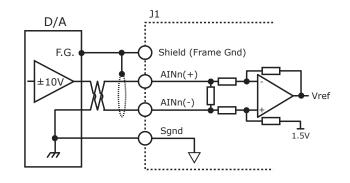
SPECIFICATIONS			
Input	Data Notes		
	HI	Vin \geq ±10.0 Vdc *	
Input Voltages	LO	Vin $\leq \pm 6$ Vdc *	
	Max	±30 Vdc *	
Input Current	±24V	±3.6 mAdc	
Input Current	0V	0 mAdc	

* Vdc Referenced to ICOM terminals.

CONNECTIONS			
Signal	Pins	Signal	Pins
IN5	J2-2	IN14	J2-7
IN6	J2-3	IN15	J2-8
IN7	J2-4	IN16	J2-9
IN8	J2-5	IN17	J2-18
ICOM1	J2-6	ICOM2	J2-17

ANALOG INPUTS: AIN1, AIN2

- ±10 Vdc, differential
- 12-bit resolution
- Programmable functions

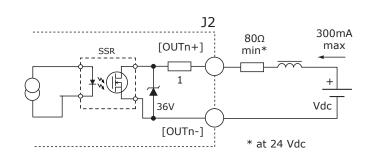

The analog inputs have a ± 10 Vdc range at 12-bit resolution As reference inputs they can take position/velocity/torque commands from a controller. If not used as command inputs, they can be used as general-purpose analog inputs.

SPECIFICATIONS

Spec	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.05 kΩ

CONNECTIONS

Signal	Pins		
Siyilai	Axis A	Axis B	
AIN(+)	J1-3	J1-5	
AIN(-)	J1-2	J1-4	
Sgnd	J1-6, 16, 22, 31, 37, 44		



OPTO-ISOLATED OUTPUTS: OUT1, OUT2, OUT3, OUT4, OUT5

- Digital, opto-isolated
- MOSFET output SSR, 2-terminal
- Flyback diodes for inductive loads
- 24V Compatible
- Programmable functions

SPECIFICATIONS

Output	Data	Notes
ON Voltage OUT(+) - OUT(-)	Vdc	0.85V @ 300 mAdc
Output Current	Iout	300 mAdc max

HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition	
OUT1~5 HI		Output SSR is ON, current flows	
0011~5	LO	Output SSR is OFF, no current flows	

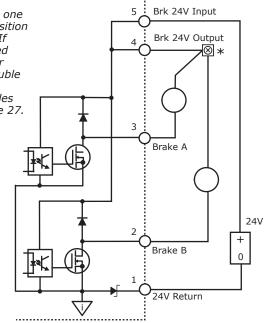
CONNECTIONS

Signal	(+)	(-)
OUT1	J2-19	J2-10
OUT2	J2-20	J2-11
OUT3	J2-21	J2-12
OUT4	J2-22	J2-13
OUT5	J2-23	J2-14

OPTO-ISOLATED MOTOR BRAKE OUTPUTS: OUT6, OUT7

- Brake outputs
- Opto-isolated •
- Flyback diodes for inductive loads •
- 24V Compatible
- Connection for external 24V power supply
- Programmable functions

SPECIFICATIONS


Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

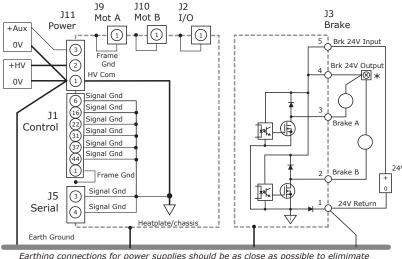
HI/LO DEFINITIONS: OUTPUTS

Input	State	Condition
BRK-A,B	HI	Output transistor is OFF Brake is un-powered and locks motor Motor cannot move Brake state is Active
OUT6,7	LO	Output transistor is ON Brake is powered, releasing motor Motor is free to move Brake state is NOT-Active

There should be only one conductor in each position of the J3 connector. If brakes are to be wired directly to J3 for their 24V power, use a double wire ferrule for J3-4. Information for ferrules can be found on page 27.

*

J3


CME Default Setting for Brake Outputs [OUT6,7] is "Brake - Active HI" Active = Brake is holding motor shaft (i.e. the *Brake is Active*)

Motor cannot move

No current flows in coil of brake CME I/O Line States shows Output 6 or 7 as HI BRK Output voltage is HI (24V), MOSFET is OFF Stepper drive output current is zero Stepper drive is disabled, PWM outputs are off

Inactive Brake is not holding motor shaft (i.e. the Brake is Inactive)

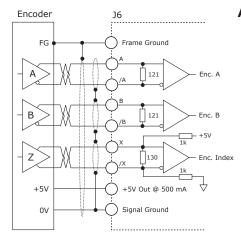
Motor can move Current flows in coil of brake CME I/O Line States shows Output 6 or 7 as LO BRK output voltage is LO (~0V), MOSFET is ON Stepper drive is enabled, PWM outputs are on Stepper drive output current is flowing

Earthing connections for power supplies should be as close as possible to elimimate potential differences between power supply OV terminals.

The brake circuits are optically isolated from all drive circuits and frame ground.

CONNECTIONS

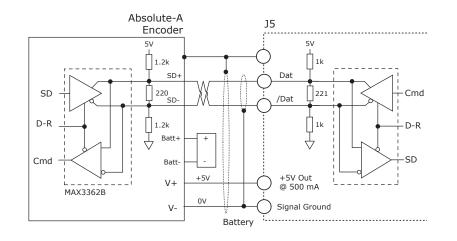
Pin	Signal	
5	Brk 24V Input	
4	Brk 24V Output	
3	Brake A [OUT6]	
2	Brake B [OUT7]	
1	24V Return	


This diagram shows the connections to the drive that share a common ground in the driver. If the brake 24V power supply is separate from the DC supply powering the drive, it is important that it connects to an earth or common grounding point with the HV power supply.

FEEDBACK CONNECTIONS

QUAD A/B/X INCREMENTAL ENCODER

Encoders with differential line-driver outputs are required (single-ended encoders are not supported) and provide incremental position feedback via the A/B signals and the optional index signal (X) gives a once per revolution position mark.

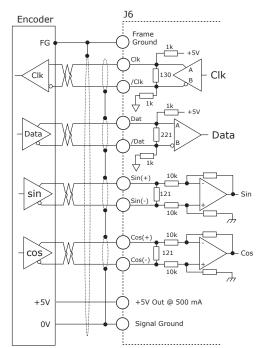

A/B/X SIGNALS

Signal	J6 Pins
Enc A	13
Enc /A	12
Enc B	11
Enc /B	10
Enc X	9
Enc /X	8
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

Sgnd = Signal Ground F.G. = Frame Gnd

SANYO DENKI ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.



ABSOLUTE-A SIGNALS

Signal	J6 Pins
Data	15
/Data	14
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

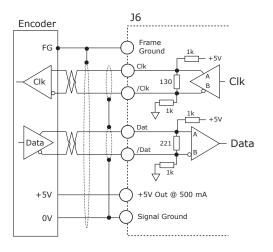
ENDAT ABSOLUTE ENCODER

The EnDat interface is a Heidenhain interface that is similar to SSI in the use of clock and data signals, but which also supports analog Sin/Cos channels from the same encoder. The number of position data bits is programmable as is the use of Sin/Cos channels. Use of Sin/Cos incremental signals is optional in the EnDat specification.

ENDAT SIGNALS

Signal	J6 Pins
Clk	9
/Clk	8
Data	15
/Data	14
Sin(+)	19
Sin(-)	18
Cos(+)	21
Cos(-)	20
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

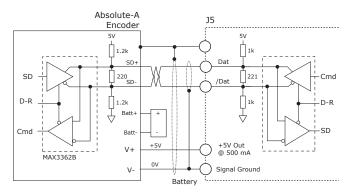
Sgnd = Signal Ground F.G. = Frame Gnd



FEEDBACK CONNECTIONS

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The polling of the encoder data occurs at the current loop frequency (16 kHz). The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA.


The hardware bus consists of two signals: SCLK and SDATA. Data is sent in 8 bit bytes, LSB first. The SCLK signal is only active during transfers. Data is clocked out on the falling edge and clock in on the rising edge of the Master.

Note: Single (outer) shields should be connected at both ends (motor and drive frame grounds). Inner shields should only be connected to Signal Ground on the drive.

ABSOLUTE-A ENCODER

The Absolute A interface is a serial, half-duplex type that is electrically the same as RS-485. Note the battery which must be connected. Without it, the encoder will produce a fault condition.

ABSOLUTE-A SIGNALS

Signal	J7,J8 Pin
Data	15
/Data	14
+5V	6, 17
Sgnd	5, 16, 25, 26
F.G.	1

Sgnd = Signal Ground F.G. = Frame Gnd

BISS ABSOLUTE ENCODER

BiSS is an - Open Source - digital interface for sensors and actuators. BiSS refers to principles of well known industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

BiSS

MA+

MA-

SL+

SĿ

+5V

Signal Ground

Frame Gnd

SSI

Clk

/Clk

Data

/Data

J6 Pins

9

8

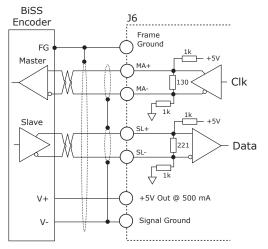
15

14

6,17

5, 16, 25, 26

1


Serial Synchronous Data Communication Cyclic at high speed

2 unidirectional lines Clock and Data

Line delay compensation for high speed data transfer Request for data generation at slaves Safety capable: CRC, Errors, Warnings Bus capability incl. actuators

Bidirectional

BISS B-protocol: Mode choice at each cycle start BISS C-protocol: Continuous mode

MULTI-PORT FEEDBACK CONNECTIONS

DUAL-LOOP FEEDBACK

Incremental or absolute encoders can connect to the Multi-port to function as secondary feedback for dual-loop operation. Typically, the primary encoder (J7,J8) is mounted on the motor, and the secondary encoder (J1) mounts to the load. The primary encoder is used for velocity feedback and the secondary one us used for the actual load position. The graphic shows both incremental and absolute connections. Only one encoder per axis can connect to the multi-port for dual-loop opertion.

MULTI-PORT J1 SIGNALS

Signal	Axis A	Axis B	
Enc A	36	42	
Enc /A	21	27	
Enc B	35	41	
Enc /B	20	26	
Enc X	34	40	
Enc /X	19	25	
Enc S	33	39	
Enc /S	18	24	
+5V	32	23	
Sgnd	31	22	
F.G.	1		

MOTOR CONNECTIONS

MOTOR PHASE CONNECTIONS

The drive outputs are three-phase PWM inverters that convert the DC buss voltage (+HV) into three sinusoidal voltage waveforms that drive the motor phase-coils. Cable should be sized for the continuous current rating of the motor. Motor cabling should use twisted, shielded conductors for CE compliance, and to minimize PWM noise coupling into other circuits. The motor cable shield should connect to motor frame and the drive frame ground terminal (J9,J10-1) for best results.

MOTOR OVER TEMP INPUT

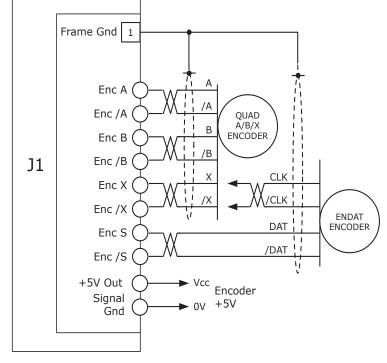
The 4.99k Ω pull-up resistor works with PTC (positive temperature coefficient) thermistors that conform to BS 4999:Part 111:1987 (table below), or switches that open/close indicating a motor over-temperature condition. The active level is programmable. These inputs are programmable for other functions if not used as Motemp inputs. And, other inputs are programmable for the Motemp function.

Property

20°C to +70°C Resistance at 85°C

Resistance at 95°C

Resistance at 105°C


MOTEMP SIGNALS

BS 4999 SENSOR

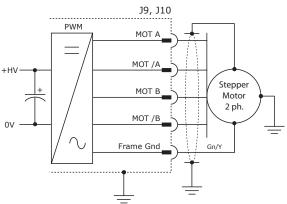
Resistance in the temperature range

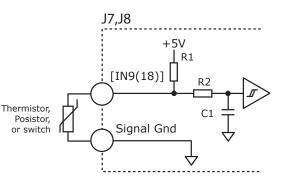
Signal	Pin
Motemp A	J7-7
Motemp B	J8-7
J7,J8 Signal Ground	5,10
Frame Gnd	12

Stepnet	Plus	Panel	2-Axis	

MOTOR SIGNALS

Signal	J9,J10 Pin
Mot A	5
Mot /A	4
Mot B	3
Mot /B	2
Frame Gnd	1

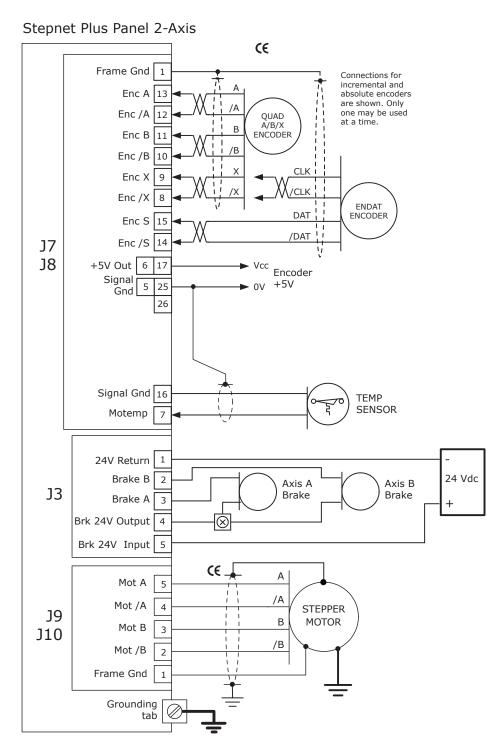

Ohms


60~750

≤1650

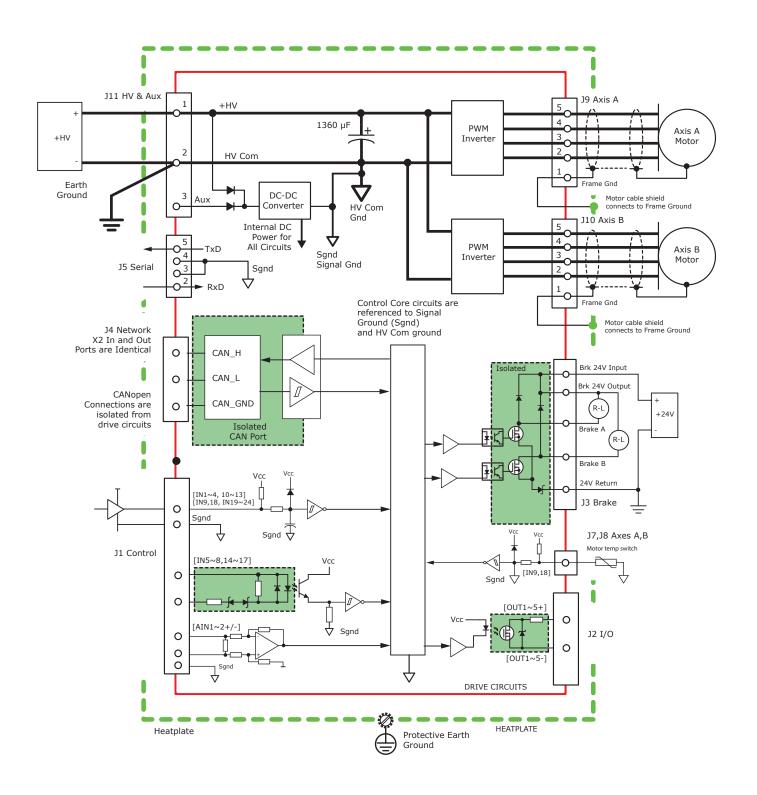
≥3990

≥12000



MOTOR CONNECTIONS: ENCODER

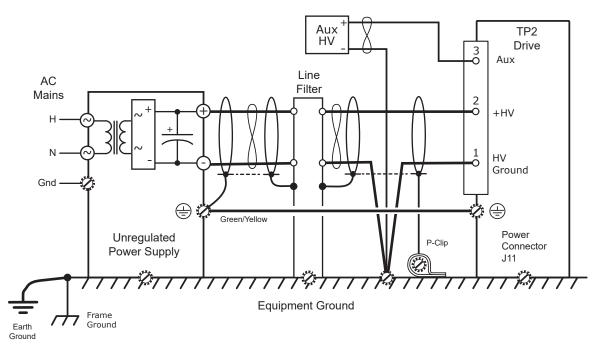
The connections shown may not be used in all installations


NOTES:

- 1) The +5VOut1 on J1-17,32 and J7-6, 17 is rated for 500 mA
 - The +5VOut2 on J1-23,38 and J8-6, 17 is rated for 500 mA
 - These are two independent power supplies, each with a 500 mA max output from all pins
 - 2) CE symbols indicate connections required for CE compliance.

DEVICE STRUCTURE & ISOLATION

This graphic shows the electrical structure of the drive, detailing the elements that share a common circuit common (Signal Ground, HV Com) and circuits that are isolated and have no connection to internal circuits. Note that there is no connection between the heatplate (Chassis, Frame Ground) and any drive circuits.



POWER & GROUNDING CONNECTIONS

DC POWER CONNECTIONS

- DC power must be provided by transformers that are galvanically isolated and provide reinforced insulation from the mains. *Auto-transformers cannot be used*.
- The (-) terminal of the power supply is not grounded at the power supply. It is grounded near each drive.
- Cabling to multiple drives for the +HV and 0V is best done in a "star" configuration, and not a "daisy-chain".
- The 0V, or return terminal of the DC power should be connected to frame ground near the drive power connector. From that point, a short wire can connect to the drive HV Ground.
- Cabling to the drive +HV and 0V terminals must be sized to carry the expected continuous current of the drive in the user's
 installation.
- DC power cabling should be shielded, twisted-pair for best EMI reduction. The shield should connect to the power supply frame ground on one end, and to the drive frame ground on the other. Adding a pigtail and ring-lug, as short as possible will provide a good connection of the shield at the drive.
- Motor cabling typically includes a green/yellow conductor for protective bonding of the motor frame. Connect as shown in the Motor Connections diagram on the following page.
- Motor cable conductors should be twisted and shielded for best EMI suppression.
- If a green/yellow grounding wire connects the motor to the drive's PE terminal, the shield pigtail and ring-lug may connect to one of the screws that mount the drive to the panel. A P-clip to ground the shield as near as possible to the drive will increase the EMI suppression of the shield. On the motor-end, the shield frequently connects to the connector shell. If the motor cable is a flying-lead from the motor, the shield may be connected to the motor frame internally.
- Braided cable shields are more effective for EMI reduction than foil shields. Double-shielded cables typically have a braided outer shield and foil shields for the internal twisted pairs. This combination is effective for both EMI reduction and signal quality of the feedback signals from analog encoders.
- Motor cable shielding is not intended to be a protective bonding conductor unless otherwise specified by the motor manufacturer.
- In double-shielded cables, the internal shielding should connect to the drive's Signal Ground on one end, and should be
- unconnected on the motor end.
- Single-shield feedback cables connect to the drive frame on one end, and to the motor frame on the other. Depending on the construction of the motor, leaving the feedback cable shield disconnected on the motor but connected on the drive end may give better results.
- The drive should be secured to the equipment frame or panels using the mounting slots. This ensures a good electrical connection for optimal EMI performance. The drive chassis is electrically conductive.

DC POWER WIRING

P-clips secure cables to a panel and provide full contact to the cable shields after the insulation has been stripped. This should be done as close to the drive as possible for best EMI attenuation.

Drive

Drive

Cint

Cint: Internal

Canacitor

+

POWER SUPPLIES, SHIELDING, REGENERATION

+HV POWER SUPPLY REQUIREMENTS

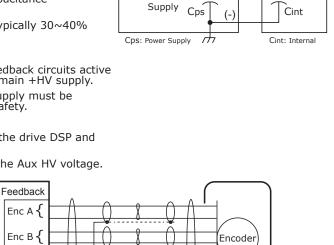
Regulated Power Supplies

- Must be over-voltage protected to 100 Vdc max when the STO (Safe Torque Off) feature of the drive is used.
- Require a diode and external capacitor to absorb regenerative energy.
- The VA rating should be greater than the actual continuous output power of the drives connected to the power supply, and adequate for the transient output power due to acceleration of motor loads.
- Must handle the internal capacitance of the drives on startup.

Unregulated Power Supplies

- No-load, high-line output voltage must not exceed 90 Vdc.
- Power supply internal capacitance adds to the drive's internal capacitance for absorption of regenerative energy.
- The VA (Volts & Amps) rating at the power supply's AC input is typically 30 ${\sim}40\%$ greater than the total output power of the drives.

AUXILIARY HV POWER


- Aux HV is power that can keep the drive communications and feedback circuits active when the PWM output stage has been disabled by removing the main +HV supply.
- Useful during EMO (Emergency Off) conditions where the +HV supply must be removed from the drive and powered-down to ensure operator safety.
- Voltage range is the same as +HV.
- Powers the DC/DC converter that supplies operating voltages to the drive DSP and control circuits.
- Aux HV draws no current when the +HV voltage is greater than the Aux HV voltage.

MOTOR CONNECTIONS

- Motor cable shield connects to motor frame, is grounded with a P-clip near the drive and terminates in a ring-lug that is screwed to the drive chassis by a mounting screw to the panel
- If provided, a green/yellow grounding wire from the motor connects to the F.G. terminal of the motor connector.

FEEDBACK CONNECTIONS

- Cable shield connects to motor frame and to the F.G. terminal of the feedback connector.
- When double-shielding is used, the inner shields connect to the Signal Ground at the drive, and is not connected at the motor end.
- If not provided by the motor manufacturer, feedback cables rated for RS-422 communications are recommended for digital encoders.

(+

Cext: External

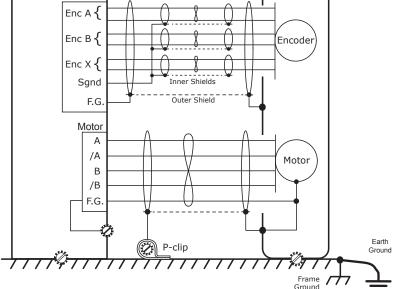
Capacitor

Cext

(+)

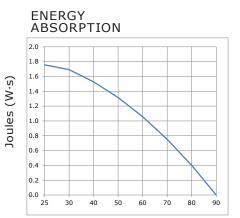
+

n


Regulated

Unregulated

Power


Power

Supply

REGENERATION

This chart shows the energy absorption in W·s for the drive operating at some typical DC voltages. It is based on the internal 470 uF capacitor and would be increased by the capacitance of the external DC power supply. When the load mechanical energy is greater than these values an external regenerative energy dissipater is required, or the DC power supply capacitance can be increased to absorb the regen energy.

CONNECTORS & SIGNALS: FRONT PANEL

J6 SAFETY (SAFETORQUE OFF)

PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	6	STO-IN1+
2	STO-IN1+	7	STO-IN1-
3	STO-IN1-	8	STO-Bypass
4	STO-IN2+	9	STO-Gnd
5	STO-IN2-		

9

¹ 10

18 26

19

¹⁶ 31

C

15

24V RTN

B BRK A BRK +24 +24

30⁴⁴

J2: ISOLATED CONTROL

n.c.

n.c.

n.c.

SIGNAL

[OUT5+] GPI

[OUT4+] GPI

[OUT3+] GPI

[OUT2+] GPI

[OUT1+] GPI

PIN	SIGNAL	PIN	SIGNAL	PIN
9	[IN16] GPI	18	[IN17] GPI	26
8	[IN15] GPI	17	COM2 [IN14~17]	25
7	[IN14] GPI	16	N/C	24
6	COM1 [IN5~8]	15	N/C	23
5	[IN8] GPI	14	[OUT5-] GPI	22
4	[IN7] GPI	13	[OUT4-] GPI	21
3	[IN6] GPI	12	[OUT3-] GPI	20
2	[IN5] GPI	11	[OUT2-] GPI	19
1	Frame Ground	10	[OUT1-] GPI	

J2: TP2 CONNECTOR

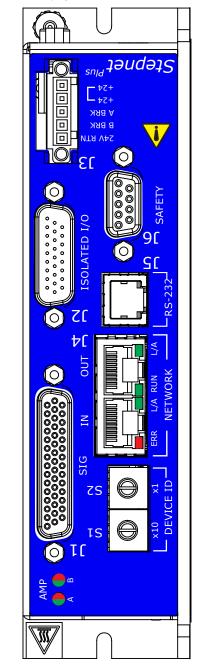
High-Density Dsub DA-26M, male plug, 26 Position

J2: CABLE CONNECTOR

High-Density Dsub DA-26F, female receptacle, 26 Position

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	16	Signal Gnd	31	Signal Gnd
2	[AIN1-]	17	A +5Vdc Out1	32	A +5Vdc Out1
3	[AIN1+]	18	A-MultiEnc /S	33	A-MultiEnc S
4	[AIN2-]	19	A-MultiEnc /X	34	A-MultiEnc X
5	[AIN2+]	20	A-MultiEnc /B	35	A-MultiEnc B
6	Signal Gnd	21	A-MultiEnc /A	36	A-MultiEnc A
7	[IN1]	22	Signal Gnd	37	Signal Gnd
8	[IN2]	23	B +5Vdc Out2	38	B +5Vdc Out2
9	[IN3] Diff1(+)	24	B-MultiEnc /S	39	B-MultiEnc S
10	[IN4] Diff1(-)	25	B-MultiEnc /X	40	B-MultiEnc X
11	N/C	26	B-MultiEnc /B	41	B-MultiEnc B
12	[IN10]	27	B-MultiEnc /A	42	B-MultiEnc A
13	[IN11]	28	N/C	43	N/C
14	[IN12] Diff2(+)	29	N/C	44	Signal Gnd
15	[IN13] Diff2(-)	30	N/C		

J1: CONTROL SIGNALS


J6 TP2 CONNECTOR:

Dsub DE-09F, 9 position female receptacle

J6 CABLE CONNECTOR: Dsub DE-09M, 9 position

Details on J1, J2, J6, J7, and J8 cable

connectors can be found in the TP2-CK listing under the Accessories section of the last page

J1: TP2 CONNECTOR

High-Density Dsub DB-44F, female receptacle, 44 Position

J1: CABLE CONNECTOR

High-Density Dsub DB-44M, male plug, 44 Position

CONNECTORS & SIGNALS: FRONT PANEL

J3: BRAKE

Pin	Signal	
1	24V Return	
2	Brake B [OUT7]	B BRK A BRK 0 3 J3
3	Brake A [OUT6]	
4	Brk 24V Output	╡ <u>+24</u> ┙ <u>┣</u> <u></u>] ⁵
5	Brk 24V Input	

J3: DRIVE CONNECTOR

Euro-style 3.5 mm male receptacle, 5-position Wago: MCS-MINI, 734-165/108-000

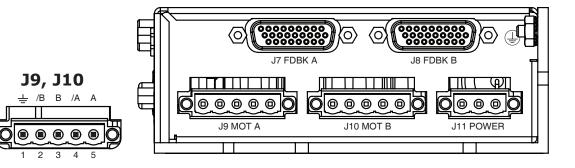
J3: CABLE CONNECTOR Wago MCS-MINI 734-105/107-000 or 734-105/107-000

WAGO CONNECTOR TOOL Contact opener: 734-191 operating tool

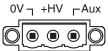
CONNECTORS & SIGNALS: END PANEL

J7, J8: AXIS A, B FEEDBACK

PIN	SIGNAL	PIN	SIGNAL	PIN	SIGNAL
1	Frame Gnd	10	A(B) Enc /B	19	N/C
2	[IN19(22)] A(B)	11	A(B) Enc B	20	N/C
3	[IN20(23)] A(B)	12	A(B) Enc /A	21	N/C
4	[IN21(24)] A(B)	13	A(B) Enc A	22	N/C
5	Signal Gnd	14	A(B) Enc /S	23	N/C
6	A(B) +5VOut1(2)	15	A(B) Enc S	24	N/C
7	[IN9(18)] A(B) Motemp	16	Signal Gnd	25	Signal Gnd
8	A(B) Enc /X	17	A(B) +5VOut1(2)	26	Signal Gnd
9	A(B) Enc X	18	N/C		



J7, J8


J7, J8: FEEDBACK

J7, J8: TP2 CONNECTOR High-Density Dsub DA-26F, female receptacle, 26 Position

J7, J8: CABLE CONNECTOR High-Density Dsub DA-26M, male plug, 26 Position

J11

J9, J10: MOTOR OUTPUTS

Signal	Pin
Motor Phase A	5
Motor Phase /A	4
Motor Phase B	3
Motor Phase /B	2
Frame Ground	1

J9, J10: DRIVE CONNECTORS Euro-style 5.08 mm male receptacle, 5-position Wago: MCS-MIDI, 231-565/108-000

J9, J10 CABLE CONNECTORS Wago MCS-MIDI Classic 231-305/107-000

WAGO CONNECTOR TOOL Contact opener: 231-291 operating tool

J11:+HV & AUX POWER

Signal	Pin
Aux HV	3
HV	2
HV Ground	1

J11: DRIVE CONNECTOR Euro-style 5.08 mm male receptacle, 3-position Wago: MCS-MIDI, 231-563/108-000

J11: CABLE CONNECTOR Wago MCS-MIDI, 231-303/107-000

WAGO CONNECTOR TOOL Contact opener: 231-291 operating tool

WIRING

24V & BRAKE: J3

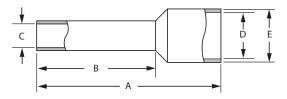
Wago MCS-MINI: 734-105/031-000, female connector; with screw flange, 5-pole; pin spacing 3.5 mm / 0.138 in

Conductor capacity	
Bare stranded:	AWG 28~16 [0.08~1.5 mm2]
Insulated ferrule:	AWG 24~16 [0.25~1.5 mm2]
Stripping length:	0.24~0.28 in[6~7 mm]
Operating tool:	Wago MCS-MINI: 734-231

J3

6

Tool

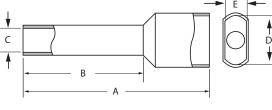

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.06)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.05)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.04)	2.6 (.10)	3.1 (.12)	7.5 (.30)

FERRULE PART NUMBERS: DOUBLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
2 x 18	2 x 1.0	Red	Altech	2776.0	15.4 (.61)	8.2 [.32]	2.4 (.09)	3.2 (.13)	5.8 (.23)	11.0 (.43)
2 x 18	2 x 1.0	Gray	Altech	2775.0	14.6 (.57)	8.2 (.32)	2.0 (.08)	3.0 (.12)	5.5 (.22)	11.0 (.43)
2 x 20	2 x 0.75	White	Altech	2794.0	14.6 (.57)	8.2 (.32)	1.7 (.07)	3.0 (.12)	5.0 (.20)	11.0 (.43)
2 x 20	2 x 0.75	Gray	TE	966144-2	15.0 (.59)	8.0 (.31)	1.70 (.07)	2.8 (.11)	5.0 (.20)	10 (.39)
2 x 22	2 x 0.50	White	TE	966144-1	15.0 (.59)	8.0 (.31)	1.40 (.06)	2.5 (.10)	4.7 (.19)	10 (.39)

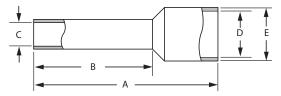
SINGLE WIRE



MOTOR OUTPUTS AND HV/AUX POWER: J9, J10 & J11

Wago MCS-MIDI Classic: 231-305/107-000 (J9, J10), 231-303/107-000 (J11), female connector; with screw flange; pin spacing 5.08 mm / 0.2 in

Conductor capacity	
Bare stranded:	AWG 28~14 [0.08~2.5 mm2]
Insulated ferrule:	AWG 24~16 [0.25~1.5 mm2]
Stripping length:	8~9 mm
Operating Tool:	Wago MCS-MIDI Classic: 231-159

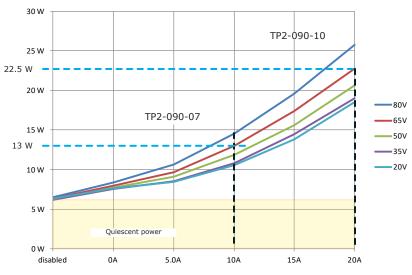

J9, J10 J11 Tool

FERRULE PART NUMBERS: SINGLE WIRE INSULATED

AWG	mm²	Color	Mfgr	PNUM	А	В	С	D	E	SL
14	2.5	Blue	Wago	216-206	15.0 (0.59)	8.0 (0.31)	2.05 (.08)	4.2 (0.17)	4.8 (0.19)	10 (0.39)
16	1.5	Black	Wago	216-204	14.0 (0.59	8.0 (0.31)	1.7 (.07)	3.5 (0.14)	4.0 (0.16)	10 (0.39)
18	1.0	Red	Wago	216-223	12.0 (.47)	6.0 (.24)	1.4 (.055)	3.0 (.12)	3.5 (.14)	8 (.31)
20	0.75	Gray	Wago	216-222	12.0 (.47)	6.0 (.24)	1.2 (.047)	2.8 (.11)	3.3 (.13)	8 (.31)
22	0.5	White	Wago	216-221	12.0 (.47)	6.0 (.24)	1.0 (.039)	2.6 (.10)	3.1 (.12)	7.5 (.30)

NOTES PNUM = Part Number SL = Stripping length Dimensions: mm (in)

THERMALS: POWER DISSIPATION


The top chart on this page shows the internal power dissipation for one axis of the TP2 under differing power supply and output current conditions. The +HV values are for the average DC voltage of the drive power supply. The lower chart shows the temperature rise vs. power dissipation under differing mounting and cooling conditions.

TOTAL POWER DISSIPATION

Use this chart to find the total power dissipation for both axes. Examples

TP2-090-07: Power supply HV = 65 Vdc Axis 1,2 currents = 5 A Total current = 10 A Total dissipation = 13 Watts

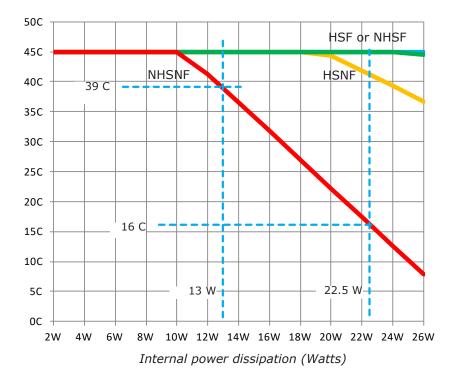
TP2-090-10: Power supply HV = 65 Vdc Axis 1,2 currents = 10 A Total current = 20 A Total dissipation = 22.5 Watts

Total continuous output current of both axes

THERMALS: MAXIMUM OPERATING TEMPERATURE VS. DISSIPATION

Use this chart to find the maximum operating temperature of the drive under differing mounting and cooling conditions.

Examples


TP2-090-07:

Using the 13 W value from the calculation above, draw a vertical line. This shows that 39 C is the maximum operating temperature for NHSNF, and that any of the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C.

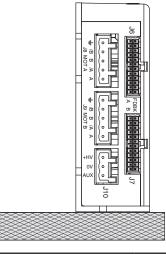
TP2-090-10:

UPing the 22.5 W value from the calculation above, draw a vertical line. This shows that 16 C is the maximum operating temperature for NHSNF. Heat sink with no fan is sufficient to 41 C, and the other mounting/cooling options will be sufficient for operation up to the maximum ambient temperature of 45 C.

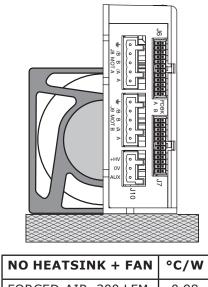
HSF = Heat Sink (with) Fan NHSF = No Heat Sink (with) Fan HSNF = Heat Sink No Fan NHSNF = No Heat Sink No Fan

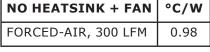
THERMALS: MOUNTING & THERMAL RESISTANCE

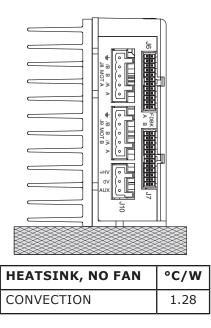
MOUNTING

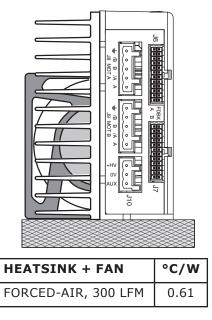

Thermal data for convection-cooling with a heatsink assumes a vertical mounting of the drive on a thermally non-conducting surface. Heatsink fins run parallel to the long axis of the drive. When fan-cooling is used vertical mounting is not necessary to guarantee thermal performance of the heatsink.

THERMAL RESISTANCE


TOP VIEWS VERTICAL MOUNTING


Thermal resistance is a measure of the temperature rise of the drive heatplate due to power dissipation in the drive. It is expressed in units of °C/W where the degrees are the temperature rise above ambient.


E.g., an drive dissipating 16 W mounted with no heatsink or fan would see a temperature rise of 38.2C above ambient based on the thermal resistance of 2.39C/W. Using the drive maximum heatplate temperature of 70C and subtracting 38.2C from that would give 31.7C as the maximum ambient temperature the drive in which the drive could operate before going into thermal shutdown. To operate at higher ambient temperatures a heatsink or forced-air would be required.

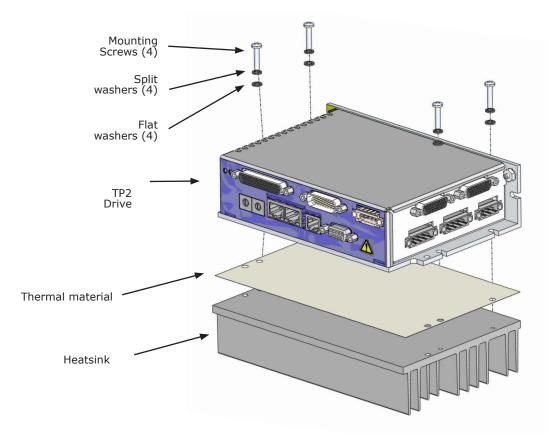


NO HEATSINK, NO FAN	°C/W
CONVECTION	2.32

HEATSINK KIT INSTALLATION

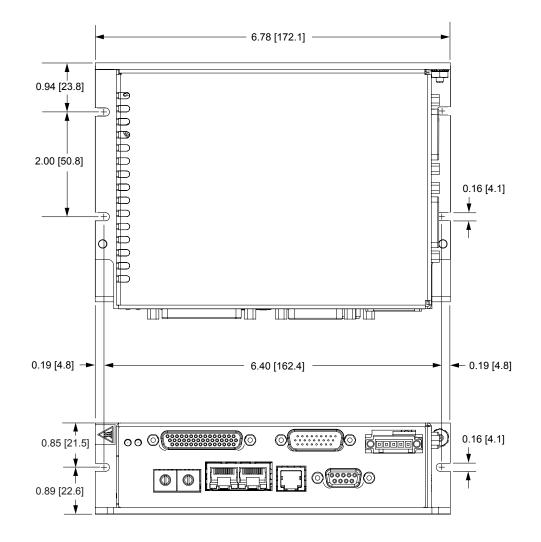
- Standard heatsink for Stepnet Plus Panel TP2
- Complete kit for user installation of the heatsink

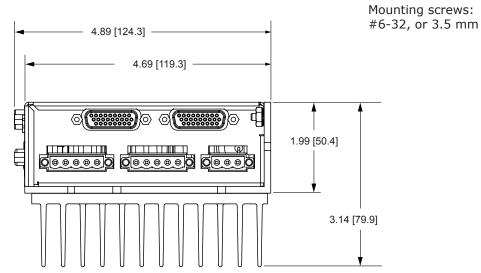
DESCRIPTION


The TP2-HK is a kit containing a heatsink and mounting hardware for field installation of a standard heatsink onto a TP2 model stepper drive.

TP2-HK HEATSINK KIT PART LIST

Qty	Description		
1	Heatsink, standard, TP2-HS		
1	Thermal material, 4.4 x 6.8 in.		
1	Kit, Heatsink Hardware, TP2		
	4	Washer, flat, #6	
	4	Washer, split, #6	
	4	Screw, PAN, #6-32 x 5/8 in	


INSTALLATION


- 1) Place the heatsink fins-down on a work surface. Orient the heatsink so that the edge with part number is away from you. The hole for the TP2 grounding lug should be to your left.
- Remove the clear protective film from the thermal material and discard it. Place the thermal material onto the heatsink in the placement area which is marked with four white "L".
 - Apply light pressure to ensure that the thermal material is flat.
- 3) Peel the white protective layer away from the thermal material. Do this slowly from one corner so as not to lift the thermal material from the heatsink.
- 4) Align the TP2 as shown and lower onto the heatsink. If needed to adjust the position, lift it away from the thermal material and lower onto the heatsink again.
- 5) Install the four mounting screws with split and flat washers and tighten evenly. Torque to 17.8 lb-in (2.0 Nm) maximum.

DIMENSIONS: IN (MM)

TP2-090-07	Stepnet Plus 2-Axis Panel CANopen stepper drive, 5/7 A, 90 Vdc
TP2-090-10	Stepnet Plus 2-Axis Panel CANopen stepper drive,10/10 A, 90 Vdc

TP2

Example: Order one Stepnet Plus TP2 drive, 10/10 A, with connector kit, serial cable kit: Qty Item Remarks

Qty Item 1 TP2-090-10 1 TP2-CK

1

Remarks *Stepnet Plus* TP2 2-axis servo drive TP2 Connector Kit Serial Cable Kit

ACCESSORIES

SER-CK

	Qty	Ref	Name	Description	Manufacturer P/N	
	1	J11	DC HV	Plug, 3 position, 5.08 mm, female	Wago: 231-303/107-000 (Note 1)	
	1			Strain relief, snap-on, 5.08 mm, 3 position, orange	Wago: 232-633	
	2	J9, J10	Motor	Plug, 5 position, 5.08 mm, female	Wago: 231-305/107-000 (Note 1)	
	2			Strain relief, snap-on, 5.08 mm, 4 position, orange	Wabo: 232-635	
	1	J9~J11	Tool	Tool, wire insertion & extraction, 231 series	Wago: 231-159	
	1		Broko	Plug, 5 position, 3.5 mm, female	Wago: 734-105/107-000 (Note 1)	
	1	J3	Brake	Strain relief, snap-on, 3.5 mm, 5 position, grey	Wago: 734-605	
TP2-CK Connector	1]	Tool	Tool, wire insertion & extraction, 734 series	Wago: 734-231	
	1		Safety	Connector, DB-9M, 9-position, standard, male	TE/AMP: 205204-4	
Kit	9	J6		AMPLIMITE HD-20 Crimp-Snap contacts, 24-20AWG, AU flash	TE/AMP: 66506-9	
	1	Note 2		Metal Backshell, DB-9, RoHS	3M: 3357-9209	
	4	1		Jumper, with pins crimped on both ends	Copley: 10-75177-01	
	1	11	Control	Connector, high-density DB-44M, 44 position, male, solder cup	Norcomp: 180-044-103L001	
	1	J1		Metal Backshell, DB-25, RoHS	3M: 3357-9225	
	1	J2	I/O	Connector, high-density DB-26F, 26 position, female, solder cup	Norcomp: 180-026-203L001	
	2	J7, J8	Feedback	Connector, high-density DB-26M, 26 position, male, solder cup	Norcomp: 180-026-103L001	
	3	J2, J7, J8		Metal Backshell, DB-15, RoHS	3M: 3357-9215	
SER-CK	1	J5	RS-232	Serial Cable Kit	-	
CANopen	1			Adapter Assy, DB9 Female to RJ45 Jack (TP2-CV)		
Network Kit	1	J4	CAN	CANopen Network Cable, 10 ft. (TP2-NC-10)		
TP2-NK	1	1		CANopen Network Terminator (TP2-NT)		
TP2-CV	1	J4	CAN	Adapter Assy, DB9 Female to RJ45 Jack		
TP2-NT	1	J4	Terminator	CANopen network terminator	Lcom: SP15731-OD1	
TP2-NC-10	1	J8	Notwork	CAN network cable, 10 ft (3 m)		
TP2-NC-01	1	JO NELWOIK	Network	CAN network cable, 1 ft (0.3 m)		
STO-CK-02	1	J6	Bypass	Connector prewired internally to allow drive to be enabled		

Note 1: For RoHS compliance, append $\hfill N01-0000''$ to the Wago part numbers listed above

Note 2: Insertion/extraction tool for J6 contacts is AMP/Tyco 91067-2 (not included in TP2-CK)

16-01444 Document Revision History

Revision	Date	Remarks
00	March 27, 2017	Preliminary version
02	April 19, 2017	Initial released version
03	July 10, 2019	Removed references to encoder loss protection which is not supported
04	August 21, 2019	Removed reference to emulated feedback in Multi-Port from Sin/Cos encoders
05	November 5, 2020	Correction to pin numbering on brake connector J3
06	August 24, 2021	Update with new front panel label to show brake signals
07	March 21, 2022	Updated feedback, add BiSS and SSI

Note: Specifications subject to change without notice