

copley Nano Module CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

[AFS] Advanced Feature Set

- 32-bit Floating Point Filters
- Multiple Advanced Filters
- Frequency Analysis Tools

Control Modes

- Cyclic Synchronous Position-Velocity-Torque (CSP, CSV, CST)
- Cyclic Synchronous Torque with Commutation Angle (CSTCA)
- Profile Position-Velocity-Torque
- Interpolated Position, Homing
- Indexer, Point-to-Point, PVT
- Camming, Gearing

Command Interface

- CANopen
- ASCII, Serial Binary, and Discrete I/O
- Stepper or Quad A/B Position Commands
- PWM Velocity-Torque Command
- Master encoder (Gearing, Camming)
- ±10 V Position-Velocity-Torque

Communications

- CANopen
- RS-232

Feedback

- · Primary Absolute **BiSS-C Unidirectional** SSI Absolute or Incremental
- Secondary Incremental Differential Quad A/B/X
- Dual Feedback
- Digital Halls

I/O

- 1 Analog Input ±10V, 12-bit
- 5 High-speed Digital Inputs
- 1 Motor Overtemp Input
- 4 High-speed Digital Outputs

Safe Torque Off

• SIL 3, Category 3, PL e

Dimensions

- NPS: 35 x 30 x 23.4 mm [1.38 x 1.18 x 0.92 in], 29 g [1.0 oz]
- NPS-Z: 35 x 47 x 33.6 mm [1.38 x 1.85 x 1.32], 57 g [2.0 oz]
- NPS-D: 97.2 x 112.4 x 45 mm [3.82 x 4.42 x 1.77 in], 221 g [7.8 oz]* *optional heatsink weight: 16.5 g [0.58 oz]

Model	Ic	Ιp	VDC
NPS-090-10	5	10	9~90
NPS-090-70	35	70	9~90
NPS-180-10	5	10	20~180
NPS-180-30	15	30	20~180

-Z and -D have these ratings.

Note: Append -D for Module/Dev Board Assy [-D] Append -Z for Module/OEM Board Assy [-Z]

Description

Nano is the smallest servo drive that Copley offers and can be mounted directly on the motor or within the robotic joints. It can satisfy requirements of the robotics, AGV, industrial machinery, medical/life-sciences and aerospace industries. The NPS module may be implemented in a customer application using only connectors, or used when the power pins may be soldered for high load current applications.

NPS

NPS-Z

NPS-D

Note:

For NPS-090-70-D and NPS-180-30-D assemblies, heatsinks are installed at the factory.

For NPS-090-10-D and NPS-180-10-D assemblies, heatsinks are not installed at the factory.

The NPS-Z is a small form factor available for immediate integration into a customer application with industry standard connectors and a heat plate mounted to the frame. NPS-D is a Development Kit for prototyping.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 1 of 46

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

MODEL	NPS-090-10 NPS-090-10-D NPS-090-10-Z	NPS-090-70 NPS-090-70-D NPS-090-70-Z	emperature = 25 °C. NPS-180-10 NPS-180-10-D NPS-180-10-Z	NPS-180-30 NPS-180-30-D NPS-180-30-Z	
OUTPUT POWER					
Peak Current	10 (7.07)	70 (49.5)	10 (7.07)	30 (21.2)	ADC (ARMS, sinusoidal)
Peak Time	1 (2.54)	1	1	1 (10.6)	Sec
Continuous Current Peak Output Power	5 (3.54) 0.9	35 (24.8) 6.3	5 (3.54) 1.8	15 (10.6) 5.4	ADC (ARMS, sinusoidal) kW
Continuous Output Power	0.45	3.15	0.9	1.8	kW
commutation output Former		ist be soldered to a r			
NPUT POWER					
HVmin to HVmax	+9 to +90	+9 to +90	+20 to +180	+20 to +180	Vdc, transformer-isolated
Ipeak	10	70	10	30	ADC (1 sec) peak
Icont	5	35	5	15	ADC continuous
VLOGIC	+9 to +60	+9 to +60	+9 to +60	+9 to +60	Vdc, transformer-isolated
VLOGIC Power	3 W With no end	coder, 6 W with enco	uer +5v @ 500 mA,	VLOGIC @ 24 Vac	
WM OUTPUTS Type	MOSFET 3-nhas	se inverter, 16 kHz ce	enter-weighted PWM	carrier snace-vect	or modulation
PWM Ripple Frequency	32 kHz	de inverter, 10 km2 ce	inter weighted i win	carrier, space vect	or modulation
ANDWIDTH					
Current Loop, Small Signal	2.5 kHz typical.	bandwidth will vary	with tuning & load ir	nductance.	
HV Compensation	,, ,	do not affect bandwi			
Current Loop Update Rate	16 kHz (62.5 μ	s)			
Position & Velocity	4 kHz (250 µs)				
Loop Update Rate					
OMMAND INPUTS					
CANopen		ansceiver, ISO 1189		2284-1 to SAE J22	84-5 compliant
Signals Data Protocol		CAN_GND, 1 mBit/s e Profile DSP-402 ov			
Stand-alone Mode	CANOPER Devic	e Profile DSF-402 0V	er Calvopeir (CoL)		
Digital Position Reference	Pulse/Direction	CW/CCW Stepper	commands (2 MHz m	naximum rate)	
9	Quad A/B Encod		sec, 8 Mcount/sec (a	,	
Digital Torque & Velocity	-				
Reference	PWM , Polarity		% - 100%, Polarity	•	
	PWM 50%		$50\% \pm 50\%$, no polar	,	
		range: 1 kHz minim	um, 100 kHz maximi	um	
Indexing		pulse width: 220 ns nces can be launched	from innuts or ASC	II commands	
Camming		ables can be stored i	•	ii communus.	
ASCII	•	230,400 Baud, 3-wir	,		
IGITAL INPUTS MODULE	•				
Number	6				
IN1~5	General purpos	e inputs			
					/dc, 10 k Ω pull-up to +5 Vdc
		ositive threshold, 0.6			Lo. II
IN6		nt assumes active dr	•		หม puii-ups. ax. input voltage = +12 Vdc
1110		to +5 Vdc, 2.2 Vdc n			
IGITAL INPUTS NPS-D, NPS-Z	ран ир			.,	- 3
N1~3	24 V tolerant F	IC CMOS 5 NV Schmi	itt triager 330 us PC	filter 0~24 Vdc o	ompatible, 10 kΩ pull-up to +5 Vd $_{0}$
	,	ositive threshold, +0		•	ompatible, to kit pull up to F5 vui
IN4~5					Vdc, 10 kΩ pull-up to +5 Vdc
	2.2 Vdc min. po	sitive threshold, 0.6	Vdc max. negative t	hreshold	,
IN6		perature,HC CMOS 5 to +5 Vdc, 2.2 Vdc n			nax. input voltage = +12 Vdc
IGITAL OUTPUTS MODULE	110 K3E pull up	. 5 146, 212 14611	positive timesiloi	a, oro vac maxi m	
Number	4				
OUT1~4		MOS Schmitt trigger,	functions programm	nable, +5 Vcc	
		୭ VOH = 4.18 Vdc, S			
IGITAL OUTPUTS NPS-D, NPS-	·Z				
Number	4				
OUT1~4		MOS Schmitt trigger,	functions programm	nable, +5 Vcc	
	Source -4 mA @ VOH = 4.18 Vdc, Sink 4 mA @ VOL = 0.26 Vdc				
				1.1 514/4	1 duty-cycle for holding current

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 2 of 46

copley Nano Module CANopen

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

ANALOG INPUT

Number

Differential, ± 10 Vdc range, 5.0 k Ω input impedance to a 12 bit ADC, single-pole low pass filter with a Type

14.5 kHz -3dB bandwidth

Function Torque, Velocity, or Position command. Or, as general purpose analog input

SERIAL COMMUNICATION PORT

Signals RxD, TxD, SGND

RxD input is 74LVC14 3.3 V Schmitt trigger with 10 $k\Omega$ pull-up to +5V

TxD output is 74HCT14 5 V Schmitt trigger

Mode Full-duplex, DTE serial communication port for drive setup and control, 9,600 to 230,400 bit/second

Protocol ASCII or Binary format

Non-isolated. Referenced to Signal Ground Isolation

SERIAL COMMUNICATION PORT, NPS-D, NPS-Z

An ADM3101E transceiver provides standard RS-232 signal levels. An RJ11 connector accepts commonly used cable connectors.

Signals RxD, TxD, SGND

CANOPEN PORT

CAN_H, CAN_L, CAN_GND, 1 Mbit/sec maximum Format

Protocol CANopen, CiA 402

Galvanically isolated from drive circuits Isolation

MOTOR CONNECTIONS

Motor U,V,W Drive outputs to 3-phase brushless motor, Wye or delta connected for DC brush motor use outputs U & V.

Minimum inductance: 200 µH line-line

Encoder Digital encoders, incremental and absolute (See FEEDBACK below).

Digital U/V/W Halls

Input is programmable to disable the drive if motor sensor drives input HI or LO. Motemp

FEEDBACK

Incremental Encoders:

Digital Incremental Encoder Quadrature signals, (A, /A, B, /B, X, /X), differential (X, /X Index signals not required)

RS-422 line receivers, 5 MHz maximum line frequency (20 M counts/sec), 74HCT thresholds

Absolute encoders:

BiSS-C Unidirectional, SSI MA+, MA- (X, /X), SL+, SL- (A, /A) signals, clock output from drive, data returned from encoder

All encoder data inputs and clock outputs are differential and require external terminators. Terminators

Hall signals (U,V,W), 15 k Ω pull-up to +5V, 15 k Ω /100 pF RC to 74LVC3G14 Schmitt trigger at +5 Vcc Commutation:

HALLS

Single-ended, 120° electrical phase difference U, V, W:

Schmitt trigger, 1.0 µs RC filter from active HI/LO sources, 5 Vdc compatible

15 k Ω pull-up to +5 Vdc, 74LVC, 3.3 V thresholds

+5V OUTPUT

Number

Rating 150 mA maximum. Protected for overload or shorts.

Available for optional peripherals immediately adjacent to the module.

+3.3V OUTPUT

Number

Rating 150 mA maximum. Protected for overload or shorts.

Available for optional microcontroller, RS-232 Transceiver, CANopen Tranceiver, LEDs, and Address Switches

+5VENC OUTPUT

Number

Rating 250 mA nominal, 500 mA maximum. Protected for overload or shorts.

Note: The maximum total current for both outputs combined is 500 mA.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 3 of 46

DIGITAL SERVO DRIVE FOR BRUSH & BRUSHLESS MOTORS

SAFE TORQUE OFF (STO)
Function
Safety Integrity Level

Function PWM outputs are inactive and the current to the motor will not be possible when the STO function is active.

SIL 3, Category 3, Performance Level e (PL e)

Inputs 2 two-terminal: STO1_IN, STO1_RTN, STO2_IN, STO2_RTN

Type Opto-isolators, 5V compatible

Disabling Connecting both STO inputs to +5V will deactivate the STO function.

PROTECTIONS

HV Overvoltage $\begin{array}{lll} + \text{HV} > +95 \pm 1 \text{ Vdc} \\ + \text{HV} > +185 \pm 1 \text{ Vdc} \\ \text{HV} > +185 \pm 0.5 \text{ Vdc} \\ + \text{HV} < +8.5 \pm 0.5 \text{ Vdc} \\ + \text{HV} < +19.5 \pm 0.5 \text{ Vdc} \\ \end{array} \begin{array}{lll} \text{Drive outputs turn off until } + \text{HV is} < +95 \pm 1 \text{ Vdc } (90 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +8.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (90 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } \pm 0.5 \text{ Vdc } (180 \text{ V models}). \\ \text{Drive outputs turn off until } + \text{HV} > +19.5 \text{ Vdc } \pm 0.5 \text{ Vdc } \pm 0$

Drive over Temperature PC Board > 90 °C +3/-0 °C Programmable as latching or temporary fault

Short Circuits Output to output, output to ground, internal PWM bridge faults

I²T Current Limiting Programmable: continuous current, peak current, peak time for drive and motor

Latching / Non-Latching Programmable response to errors

MECHANICAL & ENVIRONMENTAL

Size, Weight NPS: $35 \times 30 \times 21.6 \text{ mm} [1.38 \times 1.18 \times 0.85 \text{ in}], 1.0 \text{ oz } [29 \text{ g}]$

NPS-Z: 54.62 x 35 mm [2.25 x 1.378 in], 2.0 oz [57 g]

NPS-D: 112.4 X 97.2 X 36.86 mm [4.42 X 3.82 X 1.45 in], 7.8 oz [221 g]*

*In the above line, an asterisk indicates to add 0.58 oz [0.0165 kg] for the optional heatsink. Note: For NPS-090-70-D and NPS-180-30-D assemblies, the heatsinks are installed at the factory. For NPS-090-10, NPS-090-10-D, NPS-180-10 and NPS-180-10-D assemblies, the heatsinks are optional.

Weight 0.8 oz [0.023 kg]

Ambient temperature 0 to +45 °C operating, -40 to +85 °C storage

 $\begin{array}{lll} \mbox{Humidity} & \mbox{0 to 95\%, non-condensing} \\ \mbox{Altitude} & \leq 2000 \ \mbox{m (6,562 ft)} \\ \mbox{Vibration} & \mbox{2 g peak, } 10 \sim 500 \ \mbox{Hz (Sine)} \\ \mbox{Shock} & \mbox{10 g, } 10 \ \mbox{ms, } \mbox{<math>\frac{1}{2} \mbox{Sine pulse}} \\ \mbox{Contaminants} & \mbox{Pollution Degree 2} \end{array}$

AGENCY STANDARDS CONFORMANCE

Standards and Directives

Functional Safety
IEC 61508-1, IEC 61508-2, IEC 61508-3, (SIL 3)

Directive 2006/42/EC (Machinery) ISO 13849-1 (Cat 3, PL e) IEC 61800-5-2 (SIL 3)

Product Safety

Directive 2014/35/EU (Low Voltage)

IEC 61800-5-1

EMC

Directive 2014/30/EU (EMC)

IEC 61800-3 IEC 61800-5-2

Restriction of the Use of Certain Hazardous Substances (RoHS)

Directive 2011/65/EU and its amendments 2015/863/EU

Approvals

UL recognized component to:

UL 61800-5-1, UL 61800-5-2

DANGER

IEC 61800-5-1, IEC 61800-5-2

ISO 13849-1 Up to PL e (Cat.3) IEC 61800-5-2 Up to SIL 3

Refer to the Copley User Guide for NANO Family, Part Number 16-121699.

The information provided in the **Copley User Guide for NANO Family,** PN:16-121699, must be considered for any application using the NANO drive STO

feature.

Failure to heed this warning can cause equipment damage, injury, or death.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 4 of 46

Signal

CANTX

CANRX

SGND

CANOPEN COMMUNICATIONS

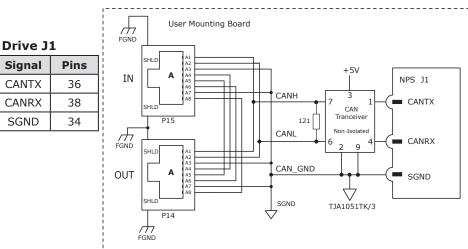
CANOPEN

CANopen is based on the CAN V2.0b physical layer, a robust, twowire communication bus originally designed for automotive use, where low-cost and noise-immunity are essential. CANopen adds support for motion-control devices and command

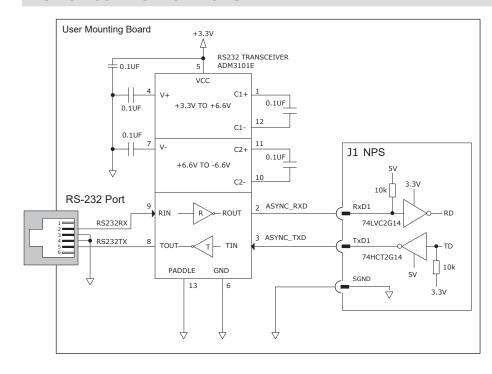
synchronization. The result provides a highly effective combination of data-rate and low-cost for multi-axis motion control systems. Device synchronization enables multiple axes to coordinate moves as if they were driven from a single control card.

CANOPEN COMMUNICATION

NPS uses the CAN physical layer signals CANH, CANL, and CAN_GND for connection and CANopen protocol for communication. Before installing the drive in a CAN system, it must be assigned a CAN Node-ID (address). A maximum of 127 CAN nodes are


allowed on a single CAN bus. Up to six digital inputs can be used to produce CAN Node-IDs from 1~63, or the Node-ID can be saved to flash memory in the module. Node-ID 0 is reserved for the CANopen master on the network.

CANOPEN COMMAND INPUTS


In the diagram, it shows the connections between the NPS and RJ-45 connectors on the user mounting board.

- If the NPS is the last node on a CAN bus, the internal terminator resistor can be used by adding a connection on the PC board as shown.
- If there are multiple NPS on the user mounting PCB, then the terminating resistor should be near the NPS that is farthest from the CAN network connection to the PCB.

The node Node-ID of the NPS may be set by using the digital inputs or programmed into the flash memory in the drive.

RS-232 COMMUNICATIONS

The serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400 Baud.

It can be used by CME for drive configuration and setup, or it can be used by the external equipment sending ASCII commands.

The diagram shows the circuit used on the -D and -Z boards, and it is recommended for user's PC boards. It converts the single-ended TTL signals levels in the NPS into the ANSI RS-232 levels which are the standard for serial communications and computer COMM ports.

RS-232 Port **Drive J1**

Signal	Pins	Signal	Pins
RS232RX	2	RxD1	30
RS232TX	5	TxD1	32
SGND	3,4	SGND	34

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 5 of 46

SAFE TORQUE OFF (STO)

The Safe Torque Off (STO) function is defined in IEC 61800-5-2. Two channels are provided which, when de-energized, prevent the upper and lower devices in the PWM outputs from producing torque in the motor.

This provides a positive OFF capability that cannot be overridden by the control firmware or associated hardware components. When the opto-couplers are energized (current is flowing in the input diodes), the control core will be able to control the On/OFF state of the PWM outputs to produce torque in the motor.

INSTALLATION

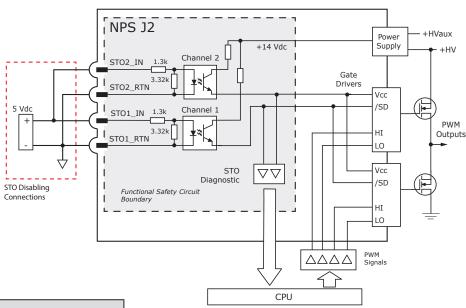
Refer to the Copley User Guide for NANO Family, Part Number 16-121699.

The information provided in the Copley User Guide for NANO Family, PN:16-121699, must be considered for any application using the drive's STO feature.

FAILURE TO HEED THIS WARNING CAN CAUSE EQUIPMENT DAMAGE, INJURY, OR DEATH.

STO DISABLE

must be flowing through the opto-couplers that are connected to the STO_IN1 and STO_IN2 terminals and the drive must be in an ENABLED state. When either of the opto-couplers are OFF, the drive is in a Safe Torque Off (STO) state and the PWM outputs cannot be activated by the control core to drive a motor.


In order for the PWM outputs of the NPS to be activated, the current This diagram shows connections that will energize both opto-couplers from a +5V source. When this is done, the STO feature is disabled and control of the output PWM stage is under control of the digital control core. If the STO feature is not used, these connections must be made in order for the drive to be enabled.

STO DISABLE CONNECTIONS

Note: The current must flow through both of the opto-couplers before the drive can be enabled.

J2 STO

Name	P	in	Name
STO_STATUS_OUTPUT	6	5	STO_STATUS_OUTPUT_RTN
STO2_IN	4	3	STO2_RTN
STO1 IN	2	1	STO1 RTN

ALL PIN NUMBERING INFORMATION FOR MODULE-LEVEL STO CONNECTIONS IN THIS DOCUMENT IS PIN NUMBERING CORRESPONDING TO THE BOTTOM ENTRY SOCKET (J2) ON THE USER MOUNTING BOARD. USER MOUNTING BOARDS MUST BE DESIGNED FOLLOWING THIS PIN NUMBERING CONVENTION.

Because the STO Header on the Nano module itself connects to the User Mounting Board via a bottom entry socket, the pin numbering for the header as marked on the Nano module is the mirror image of that for the bottom entry socket on the User Mounting Board.

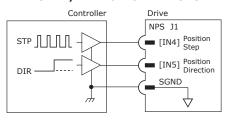
STO OPERATION

STO Input Voltage	STO State
STO-IN1 <i>AND</i> STO-IN2 ≥ 3.3 Vdc	STO Inactive. Drive can be enabled to produce torque.
STO-IN1 <i>OR</i> STO-IN2 ≤ 2.0 Vdc	STO Active. Drive cannot be enabled to produce torque.
STO-IN1 OR STO-IN2 Open	7 510 Active. Drive carriot be enabled to produce torque.

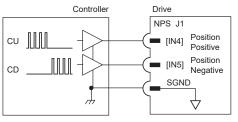
Note: In the above table, voltages are referenced between an STOx-IN and an STOx-RTN in J2. For example, V(STO1-IN) = V(STO1-IN1) - V(STO1-RTN)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 6 of 46

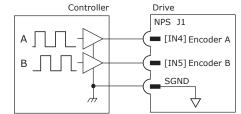
DIGITAL COMMAND INPUTS: POSITION


STAND-ALONE MODE DIGITAL POSITION-CONTROL INPUTS

NPS works with motion controllers that output pulses to command position. The following formats are supported:


- Step/Direction
- Count-Up/Count-Down (CU/CD)
- A/B Quadrature Encoder

In the Step/Direction mode, a pulse-train controls motor position, and the direction is controlled by a DC level at the Direction input. CU/CD (Count-Up/Count-Down) signals command the motor to move CW or CCW depending on which input the pulse-train is directed to. The motor can also be operated in an electronic gearing mode by connecting the inputs to a quadrature encoder on another motor. In all cases, the ratio between the input pulses and the motor revolutions is programmable.


STEP/DIRECTION INPUTS

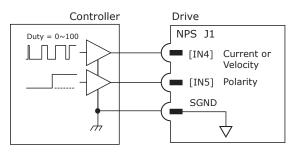
COUNT-UP/COUNT-DOWN INPUTS

QUAD A/B ENCODER INPUTS

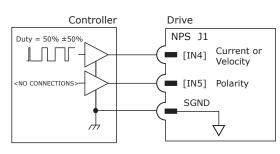
Command Options	Name	J1 Pins
Step, Count Up, Encoder A	IN4	8
Direction, Count Down, Encoder B	IN5	9

J1 SGND Pins
3,4,11,12,33,34,49,50

DIGITAL COMMAND INPUTS: VELOCITY, TORQUE


STAND-ALONE MODE DIGITAL VELOCITY-TORQUE INPUTS

NPS works with motion controllers that output pulses to command Velocity or Torque.


The following formats are supported:

- Pulse/Direction
- PWM 50%
- In Pulse/Direction mode, a pulse-train with variable duty cycle on IN4 controls Velocity or Torque from 0~100%. IN5 HI or LO controls the direction of the Velocity or polarity of the Torque.
- In 50% PWM mode, a single signal of 50% duty cycle commands 0% Velocity/Torque.
 - Increasing the duty cycle to 100% commands positive Velocity/Torque.
 - Decreasing the duty cycle to 0% commands negative Velocity/Torque.

PWM & DIRECTION

50% PWM

Command Options	Name	J1 Pins
PWM Vel/Trk, PWM Vel/Trk & Direction	IN4	8
PWM/Dir Polarity, (none)	IN5	9

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 7 of 46

copley Nano Module CANopen

HIGH SPEED INPUTS: IN1, IN2, IN3, IN4, IN5

The six digital inputs to the NPS are programmable to a selection of functions.

All have 100 ns RC filters when driven by active sources (CMOS, TTL, etc.) and all have 10 k Ω pull-up resistors to +5 Vdc.

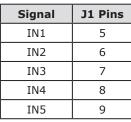
In addition to the selection of functions, the active level for each input is individually programmable.

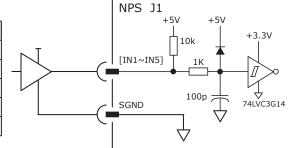
Input level functions have programmable HI or LO to activate the function.

Input transition functions are programmable to activate on LO -> HI, or HI -> LO transitions.

INPUT LEVEL FUNCTIONS

- Drive Enable, Enable with Clear Faults, Enable with Reset
- PWM Sync
- Positive Limit Switch
- Negative Limit Switch
- Home Switch
- Encoder Fault
- Motor Temperature Sensor Input
- Motion Abort
- High-Resolution Analog Divide


INPUT TRANSITION FUNCTIONS


- · Clear Faults and Event Latch
- Drive Reset
- PWM Sync Input
- Trajectory Update
- Count Input Edges, Save to Register
- High-Speed Position Capture
- Simulated Absolute Encoder Burst
- Abort Move if > N Counts From Destination in Register

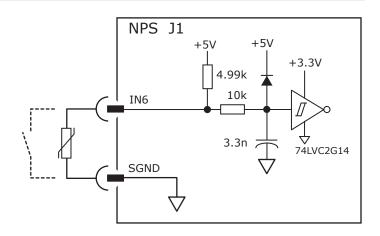
SPECIFICATIONS

Input	Data	Notes
	HI	$V_{T}+ = 1.42 \sim 2.38 \text{ Vdc}$
	LO	$V_{T} + = 0.68 \sim 1.6 \text{ Vdc}$
Input Voltages	Hys	V _H = 0.44~1.26
	Max	+12 Vdc
	Min	0 Vdc
Pull-up	R1	10 kΩ
	R2	1 kΩ
Low pass filter	C1	100 pF
	RC	IN1~5: 0.1 μs IN6: 33 us

CONNECTIONS

J1 SGND Pins	
3,4,11,12,33,34,49,50	

Consult Factory for Adapting 24V logic to 5V logic.


5V logic. Do not exceed 12V. Do not connect a 24V logic to this input.

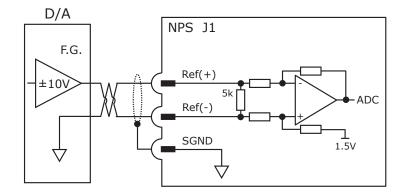
MOTOR OVERTEMP INPUT: IN6

Input IN6 has a 33 microsecond rise time RC filter when driven by active sources (CMOS,TTL, etc), with a 4.99 k Ω pullup resistor to +5 VDC. Input IN6 is designed to interface with an industry standard PTC thermistor IAW BS 49990111(1987) used for built-in thermal protection of the motor as a default. If it is not used for the Motemp function, IN6 can be re-programmed for other input functions.

CONNECTIONS

Signal	J1 Pins
IN6	10

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07


ANALOG INPUT: AIN1

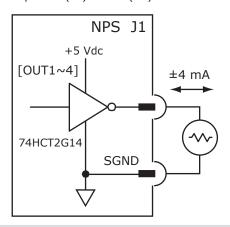
As a reference input, it takes Position/Velocity/Torque commands from a controller. If it is not used as a command input, it can be used as a general-purpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Signal	J1 Pins
Ref(+)	2
Ref(-)	1

DIGITAL OUTPUTS: OUT1~OUT4

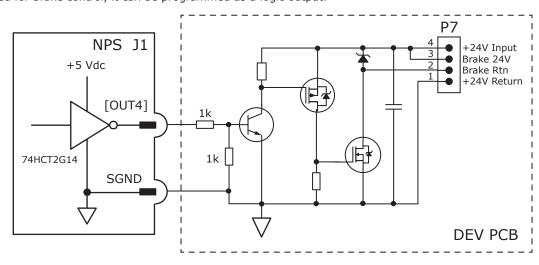

Digital outputs $[OUT1\sim4]$ are CMOS inverters. They operate from +5V and can source/sink ±4 mAdc. The output functions shown below are programmable to turn the output On (HI) or OFF (LO) when active.

OUTPUT FUNCTIONS

- Fault
- Custom Event
- PWM Sync
- Custom Trajectory Status
- Custom Position-triggered Output
- Program Control
- Brake Control (see Brake Output: OUT4)

Signal	J1 Pins
OUT1	13
OUT2	14
OUT3	15
OUT4	16

J1 SGND P	ins
3,4,11,12,33,34	1,49,50


BRAKE OUTPUT: OUT4

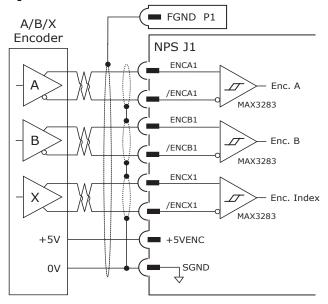
The default function of OUT4 is used to control a motor holding brake using the NPS-D board that has components to sink the higher current of the brake. If it is not used for brake control, it can be programmed as a logic output.

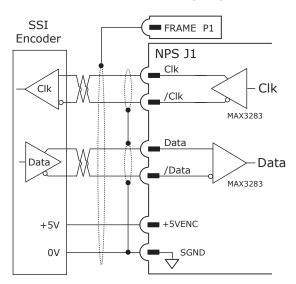
OUTPUT FUNCTION

- Motor holding brake when NPS is mounted to a DEV PCB.
- Same functions as OUT1~OUT3 if the drive is used without a DEV PCB.

Signal	J1 Pins
OUT4	16

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 9 of 46


copley Nano Module CANopen


ENCODER 1 (PRIMARY FEEDBACK)

QUAD ENCODER WITH INDEX

SSI ABSOLUTE ENCODER

The SSI (Synchronous Serial Interface) is an interface used to connect an absolute position encoder to a motion controller or control system. The NPS drive provides a train of clock signals in differential format to the encoder which initiates the transmission of the position data on the subsequent clock pulses. The number of encoder data bits and counts per motor revolution are programmable. The hardware bus consists of two signals: SCLK and SDATA. The SCLK signal is only active during transfers. Data is clocked in on the falling edge of the clock signal.

SSI, BiSS Signals

SSI	BiSS	J1 Pins
Clk	MA+	47
/Clk	MA-	48
Data	SL+	43
/Data	SL-	44
+!	5V	57,58

A/B/X SIGNALS

Signal	J1 Pins
ENCA1	43
/ENCA1	44
ENCB1	45
/ENCB1	46
ENCX1	47
/ENCX1	48
+5VENC	57,59

FRAME GROUND	
P1	

J1 SGND Pins	
3,4,11,12,33,34,49,50	

BISS-C ABSOLUTE ENCODER

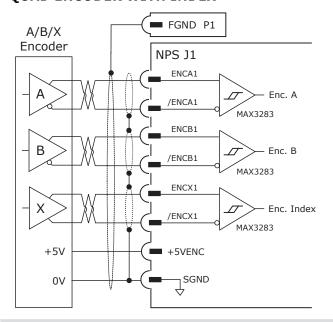
BiSS-C is an - Open Source - digital interface used for sensors and actuators. BiSS-C refers to principles that comply with industrial standards for Serial Synchronous Interfaces like SSI, AS-Interface® and Interbus® with additional options.

- Serial Synchronous Data Communication
- Cyclic at high speed
- 2 unidirectional lines Clock and Data
 - -Line delay compensation for high speed data transfer
 - -Request for data generation at slaves
 - -Safety capable: CRC, Errors, Warnings
 - -Bus capability incl. actuators
- Bidirectional
 - -BiSS C-protocol: Continuous mode

BiSS Encoder FRAME P1 NPS J1 Master MA+ MA+ Clk MA-MA MAX14783 Slave SL+ Data SL-MAX3283 +5VENC V+ ٧/-

Note: Single (outer) shields should be connected at the drive end. Inner shields should be connected to only a Signal Ground on the drive.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 10 of 46


copley Nano Module CANopen

ENCODER 2: SECONDARY FEEDBACK

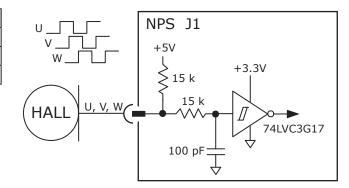
QUAD ENCODER WITH INDEX

A/B/X SIGNALS

Signal	J1 Pins
ENCA2	51
/ENCA2	52
ENCB2	53
/ENCB2	54
ENCX2	55
/ENCX2	56
+5VENC	57,59

FRAME GROUND	
P1	

J1 SGND Pins
3,4,11,12,33,34,49,50


OTHER MOTOR CONNECTIONS

HALLS

Hall sensors in a brushless motor are produced from the magnetic field in the motor and provide commutation feedback without an encoder. When it is used with incremental encoders, they enable the motor to operate without a phase-finding cycle.

HALL SIGNALS

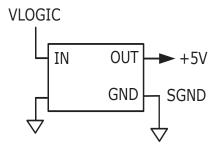
Signal	J1 Pins
HALLU	39
HALLV	40
HALLW	41

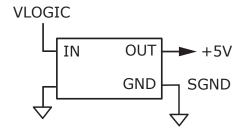
DC OUTPUT VOLTAGES

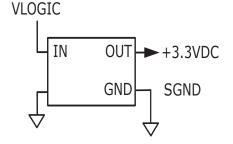
+5VENC

This voltage is used for encoders and it has an internal fault protection. The maximum current output is 500 mA shared between encoders. Current limiting occurs at 600 mA

minimum, 1.0 A maximum.


+5V


This voltage is used for optional peripherals that are immediately adjacent to the module and it has internal fault protection. The maximum current output is 150 mA.


+3.3 VDC

This voltage is used for connections that are immediately adjacent to the module:

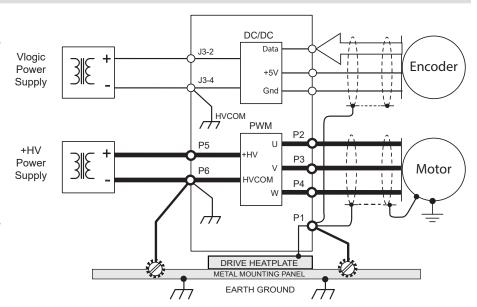
- Microcontroller
- RS-232 Transceiver
- CAN Transceiver
- LEDs and Address Switches
- 150 mA maximum
- Protected for overload or shorts

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 11 of 46

+HV CONNECTIONS

POWER SUPPLIES

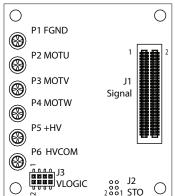
The drive main power, +HV, is typically supplied by unregulated DC power supplies. These power supplies must be isolated from the mains, and all circuits should be grounded to earth at some point. The +HV supply connects to P5 and P6.


To comply with the wiring practices, the +HV wires should be twisted together for noise suppression, and the power supply should not be grounded. By following the wiring guidelines, it ensures that the higher currents flowing in these conductors will not flow through any circuit grounds where they might induce noise.

During deceleration, the mechanical energy in the motor and load is converted back into electrical energy that must be dissipated as the motor comes to a stop. While some of this is converted to heat in the motor windings, the rest of it will flow through the drive into the power supply.

Use an external storage capacitor if the load has appreciable inertia, and this should be sized such that adding the undissipated energy from the motor will not raise the voltage beyond the point at which the drive shuts down. When this is not possible, an external 'dumper', or regenerative energy dissipater must be used which acts as a shunt regulator across the +HV and Gnd terminals.

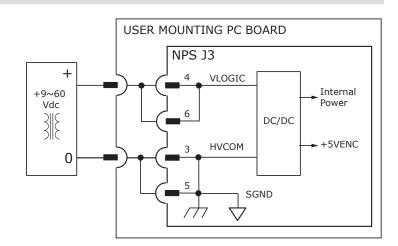
GROUNDING


A P6 connection to ground keeps the +HV power source stable at the drive while the voltage at the power supply (-) varies due to the cable resistance and the +HV current. Grounding at P1 provides a PE (Protective Earth) connection as well as a point to ground the motor cable shields.

P1~P6

Signal	Pins
FGND	P1
MOTU	P2
MOTV	Р3
MOTW	P4
+HV	P5
HVCOM	P6

VLOGIC CONNECTIONS


DESCRIPTION

VLOGIC is required for the operation of the drive. It powers the internal logic and control circuits. Encoder +5V is derived from VLOGIC. When the STO feature is used, VLOGIC must be produced by power supplies with the transformer isolation from the mains and PELV or SELV ratings, and a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

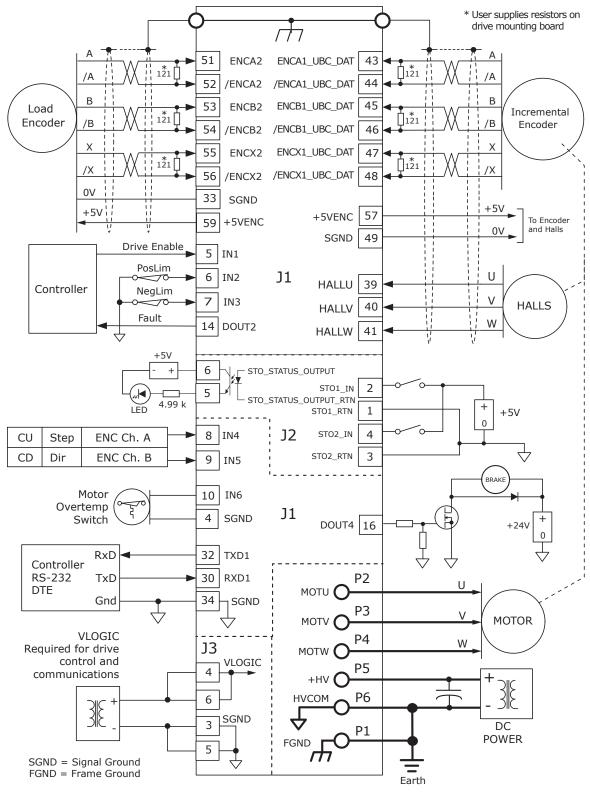
J3 VLOGIC

Name	Pin		Name
N.C.	2	1	N.C.
VLOGIC	4	3	HVCOM
VLOGIC	6	5	HVCOM
N.C.	8	7	N.C.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLOGIC +9~60. 24V power is recommended. 24V required if using 24V BRAKE. If common to HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

Page 12 of 46



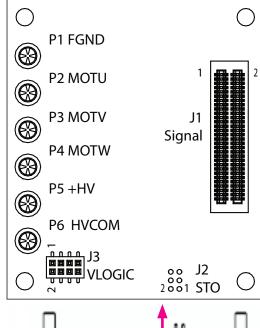
NPS TYPICAL CONNECTIONS

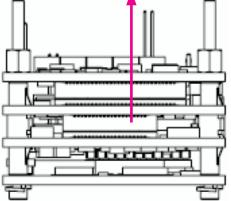
The following diagram shows the NPS connections.

Note: In the diagram, the asterisk indicates the user is required to supply the resistors on the driving mounting board.

NPS Connections

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 13 of 46





PC BOARD CONNECTIONS

The following diagrams and tables show the pins and signals located on the topside of the user mounting PC board.

Name	Pin
FGND	P1
Mot U	P2
Mot V	Р3
Mot W	P4
+HV	P5
HVCOM	P6

J2 STO Connector Diagram

J3 VLOGIC

Name	Pin		Name
N.C.	2	1	N.C.
VLOGIC	4	3	HVCOM
VLOGIC	6	5	пусом
N.C.	8	7	N.C.

J2 STO

Name	Pin		Name
STO_STATUS_OUTPUT	6	5	STO_STATUS_OUTPUT_RTN
STO2_IN	4	3	STO2_RTN
STO1_IN	2	1	STO1_RTN

Note: The STO Connector J2 is mounted on the bottom side of the PCB.

ALL PIN NUMBERING INFORMATION FOR MODULE-LEVEL STO CONNECTIONS IN THIS DOCUMENT IS PIN NUMBERING CORRESPONDING TO THE BOTTOM ENTRY SOCKET (J2) ON THE USER MOUNTING BOARD. USER MOUNTING BOARDS MUST BE DESIGNED FOLLOWING THIS PIN NUMBERING CONVENTION.

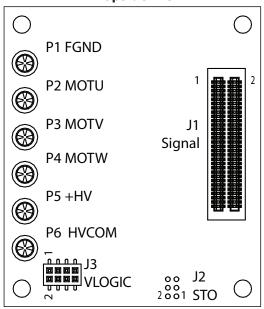
Because the STO Header on the Nano module itself connects to the User Mounting Board via a bottom entry socket, the pin numbering for the header as marked on the Nano module is the mirror image of that for the bottom entry socket on the User Mounting Board.

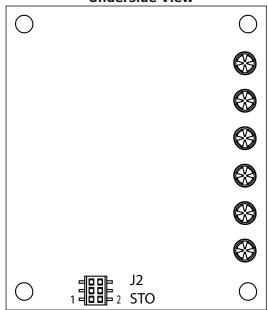
J1 SIGNAL

J1 SIGNAL					
Name	Pin		Name		
REFIN1-	1	2	REFIN1+		
AGND	3	4	SGND		
[ENABLE] IN1	5	6	IN2		
IN3	7	8	IN4		
IN5	9	10	IN6		
SGND	11	12	SGND		
DOUT1	13	14	DOUT2		
DOUT3	15	16	DOUT4 [BRAKE]		
SGND	17	18	SGND		
N.C.	19	20	N.C.		
N.C.	21	22	N.C.		
N.C.	23	24	N.C.		
N.C.	25	26	N.C.		
N.C.	27	28	SGND		
N.C.	29	30	ASYNC_RXD1		
SGND	31	32	ASYNC_TXD1		
SGND	33	34	SGND		
ASYNC_RXD2	35	36	CANTX		
ASYNC_TXD2	37	38	CANRX		
HALLU	39	40	HALLV		
HALLW	41	42	+3.3V		
ENCA1_UBC_DAT	43	44	/ENCA1_UBC_DAT		
ENCB1	45	46	/ENCB1		
ENCX1_UBC_CLK	47	48	/ENCX1_UBC_CLK		
SGND	49	50	SGND		
ENCA2	51	52	/ENCA2		
ENCB2	53	54	/ENCB2		
ENCX2	55	56	/ENCX2		
+5VENC	57	58	+5V		
+5VENC	59	60	+3.3V		

Note: In the table, the term, N.C., refers to No Connection.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 14 of 46





PC BOARD CONNECTORS

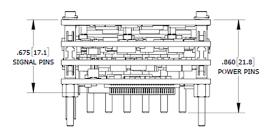
User Mounting Board Topside View

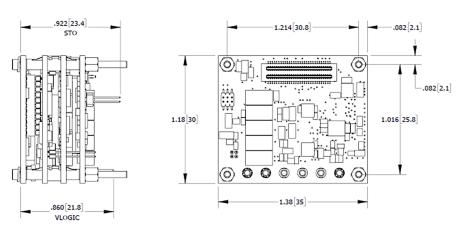
User Mounting Board Underside View

Ref Des	Label	Mfgr	Part Number *	Description	Qty
J1	Signal	WCON	3620-S060-022G3R02	Header, 60 pos, 0.5 mm pitch	1
J2	STO	Samtec	CLM-103-02-L-D-BE	Header, 6 pos, 1 mm pitch	1
J3	VLOGIC	WCON	2521-204MG3CUNR1	Header, 8 pos, 1 mm pitch	1
P1~P6	+HV, Motor	WINPIN	WP-WJ018G3R1	RCPTL Outer Sleeve Crown Spring	6

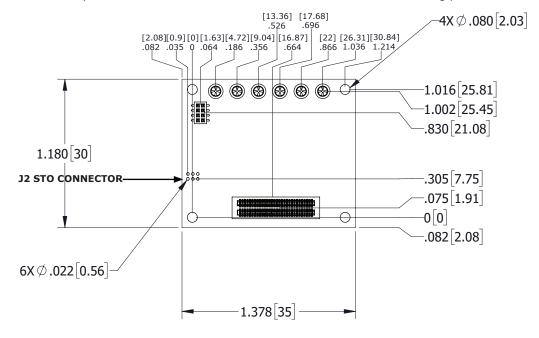
*Note: In the table, the asterisk indicates the part numbers to purchase the reels of these components. Refer to the following vendor to contact for approved value-added partner Action Electronics.

Action Electronics, Inc. Walpole, MA 02081-2522-US Phone: (508) 668-5621


Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 15 of 46



DIMENSIONS



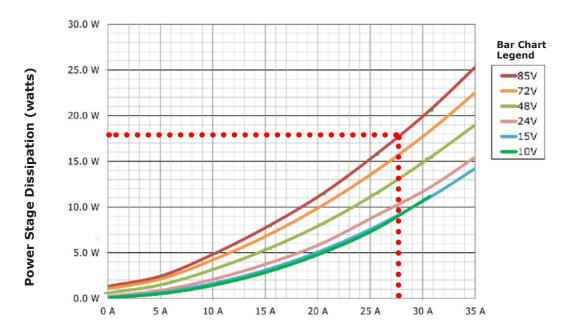
Dimensions in Inches (mm)

PC BOARD MOUNTING DIMENSIONS

The following diagram shows the topside view of the user mounting PC board for the drive. The STO (J2) connector is mounted on the underside of the PC board. The topside view shows the clearance holes for the STO connector mating pins.

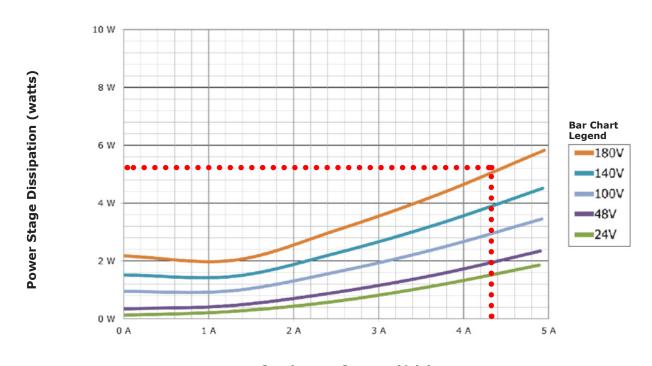
User Mounting Board Dimensions (Topside View)

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 16 of 46



THERMALS: PWM OUTPUTS DISSIPATION

NPS-090-70


The following chart shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive. In the chart, the dotted lines show a dissipation of 18 W. at a continuous current of 28 Adc and +HV = 85 Vdc.

Continuous Current (Adc)

NPS-180-10

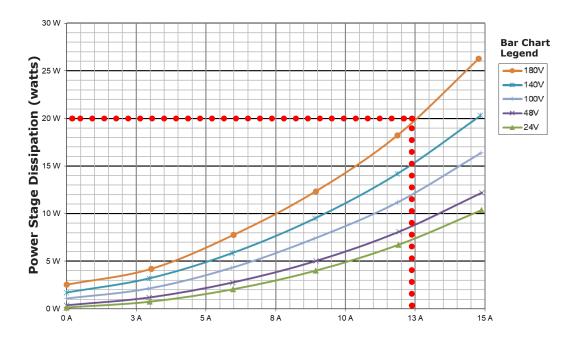
In the chart below, it shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive. In the chart, the dotted lines show a dissipation of 5.2 W. at a continuous current of 4.4 Adc and +HV = 180 Vdc.

Continuous Current (Adc)

Tel: 781-828-8090

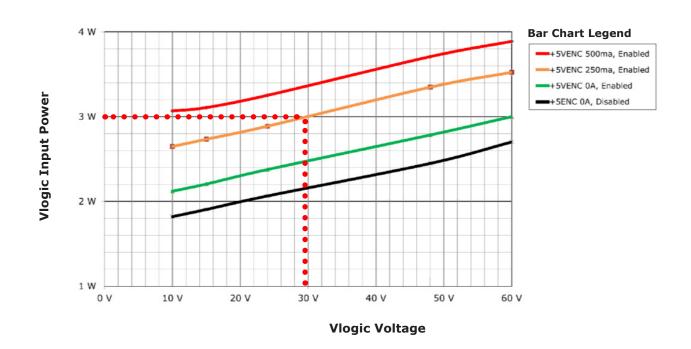
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 17 of 46



THERMALS: VLOGIC & ENCODER +5V OUTPUT DISSIPATION

NES-180-30


In the chart below, it shows the power dissipation in the drive when the PWM outputs are driving a motor. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive. In the chart, the dotted lines show a dissipation of 20 W. at a continuous current of 13 Adc and \pm HV = 180 Vdc.

Continuous Current (Adc)

NPS All Models

The following chart shows the power dissipation in the Vlogic circuits that power the drive's control circuits and the external encoders. Adding the PWM dissipation to the Vlogic dissipation will yield the total dissipation in Watts for the drive. In the chart, the dotted lines show a dissipation of 3.0 W. at Vlogic = 30 Vdc, when the drive is in an Enabled state and outputting 250 mA for an encoder.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 18 of 46

Tel: 781-828-8090

THERMAL: RESISTANCE

In the Heatsink table, it shows the thermal resistance Rth in degrees-C per Watt (C/W) for typical cooling configurations. The drive has the standard "pins" heatsink mounted with a sheet of thermal material placed between the drive and the heatsink.

The acronym, LFM, is Linear Feet per Minute. LFM is defined as the velocity of air flow produced by a fan directed in line with the heatsink fins.

HEATSINK

LFM	0	100	200	300	400
Rth	5.3	3	2.5	1.6	1.3

FIND COOLING MEANS WITH DISSIPATION AND AMBIENT TEMPERATURE KNOWN

Given: Tamb = 32 °C (89.6 °F), PWM dissipation = 18 W, VLOGIC dissipation = 3 W

Tmax = 80 °C (drive shut-down temperature minus 10 °C for margin)

Find: Thermal resistance Rth:

Delta-T = Tmax - Tamb = 80 - 32 = 48 °C

Total dissipation = 18 + 3 = 21 W

Rth = Delta-T / dissipation = $^{\circ}$ C / Watt = 48 / 21 = 2.3 $^{\circ}$ C/W

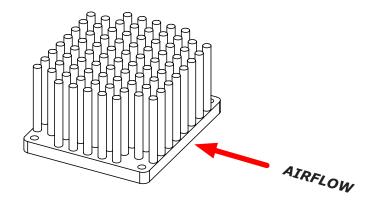
From the above tables, there are two configurations that provide Rth less than 2.3 °C/W:

With heatsink, forced air at 300, 400 LFM

FIND MAX AMBIENT TEMP WHEN DRIVE CONFIGURATION IS KNOWN

Given: Heatsink, forced-air at 300 LFM, dissipation is 26.5 W

Rth = $1.6 \, ^{\circ}\text{C/W}$


Tmax = 80 °C (drive shut-down temperature)

Find: Max. ambient operating temperature

Delta-T = $26.5 \text{ W} \times 0.9 \text{ °C/W} = 23.9 \text{ °C}$

Max. Tamb = Tmax - Delta-T = 80 - 23.9 = 56.1 °C

Max. ambient operating temperature is 45 °C so it can operate up to this temperature.

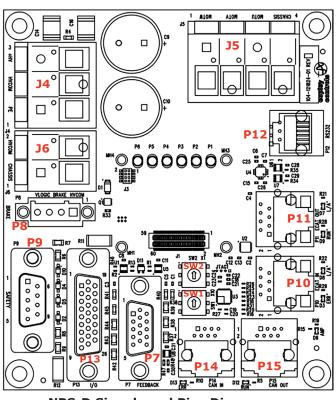
Airflow Direction

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 19 of 46

NPS-D

Model	Ic	Ιp	VDC
NPS-090-10-D	5	10	9~90
NPS-090-70-D	35	70	9~90
NPS-180-10-D	5	10	20~180
NPS-180-30-D	15	30	20~180

J4 +HV


Signal	Pin
+HV	3
HVCOM	2
PE	1

J6 GROUNDS

Signal	Pin
HVCOM	2
FGND	1

P8 BRAKE

Signal	Pin
24V_GND_IN	1
BRAKE	2
VLOGIC	3
VLOGIC	4

NPS-D Signals and Pins Diagram

J5 MOTOR P12 RS-232

Pin	Signal	Pin	Signal
1	MOTW	6	n.c.
2	MOTV	5	TxD
3	MOTU	4	SGND
4	FGND	3	SGND
		2	RxD
		1	n.c.

P14 CAN P15 CAN

Pin	Signal	Pin	Signal
1	CANH	1	CANH
2	CANL	2	CANL
3	SGND	3	SGND
4	*	4	*
5	*	5	*
6	*	6	*
7	SGND	7	SGND
8	*	8	*

*Note: In the above tables, the asterisk in the Signal column indicates these pins feed-through between P14 & P15. They have no internal connections.

P9 STO

Signal	Pin		Signal	
FGND	1	6	STO_STATUS_OUTPUT	
STO1_24V_IN	2	7	STO_STATUS_OUTPUT_RTN	
STO1_RTN	3	8	SGND	
STO2_24V_IN	4	9	VLOGIC +24V	
STO2 RTN	5			

P13 I/O & ENCODER 2

Pin	Signal	Pin	Signal		Pin	Signal
1	FGND	10	IN5		19	SGND
2	REFIN1-	11	n.c.	$\ $	20	+5VENC
3	REFIN1+	12	n.c.		21	/ENCX2
4	IN1_24VTOL	13	n.c.	$\ $	22	ENCX2
5	IN2_24VTOL	14	n.c.		23	/ENCB2
6	IN3_24VTOL	15	SGND	11	24	ENCB2
7	IN4	16	DOUT1	$\ $	25	/ENCA2
8	n.c.	17	DOUT2		26	ENCA2
9	n.c.	18	DOUT3]		

P7 ENCODER 1

Pin	Signal	Pin	Signal		Pin	Signal
1	FGND	6	HALLV		11	/ENCB1
2	+5VENC	7	/ENCX1_UBC_CLK		12	ENCB1
3	HALLU	8	ENCX1_UBC_CLK		13	/ENCA1_UBC_DAT
4	+5VENC	9	HALLW		14	ENCA1_UBC_DAT
5	SGND	10	OVERTEMP_IN		15	SGND

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 20 of 46

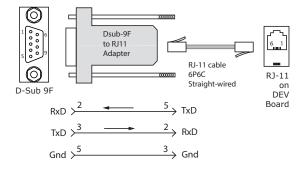
NPS-D CAN CONNECTORS

CANOPEN CONNECTORS

Dual RJ-45 connectors that accept standard Ethernet cables are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface.

P14-P15 CAN CONNECTORS

P14 CAN


P15 CAN

			. 10	CAIT
Pin	Signal		Pin	Signal
1	CANH		1	CANH
2	CANL		2	CANL
3	CANGND		3	CANGND
4	*		4	*
5	*		5	*
6	*		6	*
7	*		7	*
8	*		8	*
		-		

*Note: In the Signal column, the asterisk indicates the corresponding pin has no internal connections and feed-through for each pin.

SER-CK SERIAL CABLE KIT

The SER-CK provides connectivity between a D-Sub 9 male connector and the RJ-11 connector P12 on the NPS-D. It includes an adapter that plugs into the COM1 (or other) port of a PC and uses a straight-through modular cable to connect to the NPS. The connections are shown in the diagram below.

A 120 Ω CAN terminator should be placed in the last drive in the chain. The XTL-NT is a 121 ohm resistor in a male modular connector. This provides an easy way to terminate the last drive in a CAN network.

RS-232 CONNECTION

The RS-232 port is used to configure the drive for stand-alone applications, or for configuration before it is installed into an CANopen network. CME software communicates with the drive over this link and is then used for complete drive setup. The CANopen Device ID that is set by the rotary switches can be monitored, and a Device ID programmed as well. The RS-232 connector, P12, is a modular RJ-11 type that uses a 6-position plug, four wires of which are used for RS-232. A connector kit is available (SER-CK) that includes the modular cable, and an adapter to interface this cable with a 9-pin RS-232 port on a computer.

P12 DEV RS-232

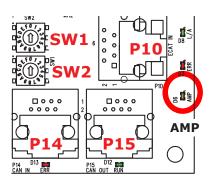
Pin	Signal
2	RS232RX1 [RxD]
3,4	SGND
5	RS232TX1 [TxD]

SER-USB-RJ11

This device provides connectivity between a USB connector and the RJ-11 connector J9 on the DEV board.

Note: The Serial Interface Cable USB to RJ11 (SER-USB-RJ11) can be used to plug-into either a customer-designed board with an RJ11 or a Copley NPS drive with the NPS-D. When you order either type of board, the Manufacturer recommends you order the Serial Interface Cable USB to RJ11 (SER-USB-RJ11).

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 21 of 46

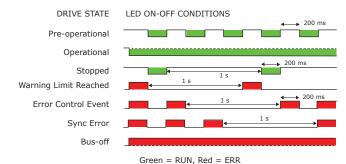


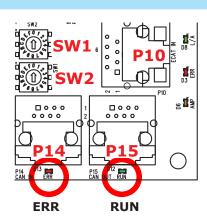
NPS-D

AMP STATUS LED

A bi-color LED "AMP" gives the state of the drive. Colors do not alternate, and can be solid On or BLINKING. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table below is shown.

LED	CONDITION DESCRIPTION		
RED/BLINKING	Latching fault. Operation can not resume until the drive is Reset.		
RED/SOLID	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.		
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.		
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.		
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or CANopen commands.		


LATCHING FAULTS


Default	Optional (Programmable)		
Short circuit (Internal or External)	Over-voltage		
Drive over-temperature	Under-voltage		
Motor over-temperature	Motor Phasing Error		
Feedback Error	Command Input Lost		
Following Error	Motor Wiring Disconnected		
STO Active	Over Current (latched)		

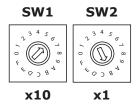
CAN BUS COMMUNICATIONS

CANIEDS

The green LED "RUN" shows the state of the CAN state machine. The red LED "ERR" shows the status of the CAN physical layer and errors due to the missing messages.

CAN DEVICE ID

Drives operating on a CANopen system must have a Device ID set either through programming or set through inputs or switches located on the Dev board. In the NPS-D, this is provided by two 16-position rotary switches with hexadecimal encoding. These switches can set the Device ID of the drive from $0x01\sim0x7F$ ($1\sim127$ decimal). The chart shows the decimal values of the hex settings of each switch. In the table, the DEC column includes the decimal values and the HEX column includes he corresponding hex settings for each switch (SW1 and SW2).


For Example 1: To find the switch settings for the Decimal Device ID <u>107</u>, refer to the table to calculate the following:

1) In the table SW1 column, find the highest number that is less than 107, (96). Refer to the SW1 column and set <u>SW1, (96)</u> to the corresponding hex value that appears in the HEX column, (6).

96 < 107 and 112 > 107, so SW1 = 96 = Hex 6

2) Subtract 96 from the desired Device ID (107) to get the decimal value of switch SW2, (11). Refer to the SW2 column and set <u>SW2</u>, (11) to the corresponding hex value that appears in the HEX column, (B).

SW2 = (107 - 96) = 11 = Hex B

Tel: 781-828-8090

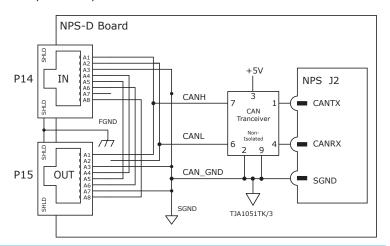
CAN Device ID Switch

	Decimal Values					
		SW1	SW2			
	HEX	DEC				
	0	0	0			
	1	16	1			
	2	32	2			
	3	48	3			
	4	64	4			
	5	80	5			
1	6	96	6			
_	7	112	7			
	8	128	8			
	9	144	9			
	Α	160	10			
2	В	176	11			
	С	192	12			
	D	208	13			
	E	224	14			
	F	240	15			

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

NPS-D CANOPEN CONNECTORS

CAN CONNECTORS


Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity. If there are multiple NPS drives with NPS-D in the system, the 121 ohm terminator should be placed only on the last drive in the chain.

P14 CAN-IN

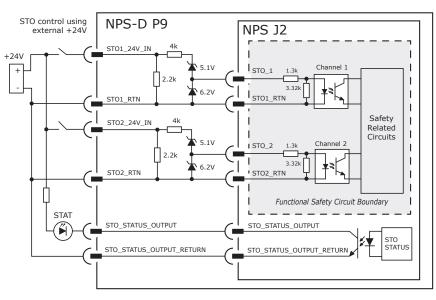
P15 CAN-Ol	JT
------------	----

Pin	Signal	Pin	Signal
A1	CANH	A1	CANH
A2	CANL	A2	CANL
А3	SGND	А3	SGND
A4	*	A4	*
A5	*	A5	*
A6	*	A6	*
Α7	SGND	Α7	SGND
A8	*	A8	*

*Note: In the Signal column, the asterisk represents these pins feed-through between P14 & P15. They have no internal connections.

NPS-D SAFE TORQUE OFF (STO)

DESCRIPTION


The diagram shows the use of external 24V to energize the STO inputs. Both STO inputs must be energized in order to enable the drive. IN1, the hardware Enable input, is used with an immediate contact relay to bring the motor to a stop before a delayed contact relay de-energizes the STO inputs and prevents torque production in the motor.

STAT-OUT Operation

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

P9 STO

Signal	Pin		Signal
FGND	1	6	STO_STATUS_OUTPUT
STO1_24V_IN	2	7	STO_STATUS_OUTPUT _RETURN
STO1_RTN	3	8	SGND
STO2_24V_IN	4	9	VLOGIC
STO2-RTN	5		

In the STAT-OUT Operation table, the STO1 & STO2 rows, 1 = 24V are applied between the IN-24V and RTN. 0 = open-circuit. In the STAT row, 1 = the optocoupler is ON, 0 = the optocoupler is OFF.

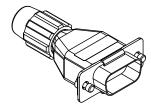
STAT output is On (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

STO OPERATION

STO Input Voltage	STO State		
STO1-IN-24V AND STO2-IN-24V ≥ 16 Vdc	STO Inactive. Drive can be enabled to produce torque		
STO1-IN-24V <i>OR</i> STO2-IN-24V < 16 Vdc	CTO Active Drive cannot be enabled to produce torque		
STO1-IN OR STO2-IN Open	STO Active. Drive cannot be enabled to produce torque		

Note: In the above table, voltages are referenced between an STOx-IN and an STOx-RTN in P2. E.g. V(STO1-IN) = V(STO1-24V-IN1) - V(STO1-RTN)

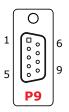
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 23 of 46

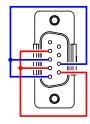


NPS-D SAFE TORQUE OFF (STO) BYPASS

The Bypassing feature is used in conditions when you choose not to use the STO function. The STO-CK-04 has jumpers that use the VLOGIC to energize the STO inputs.

This feature disables the STO function, allowing the drive to be enabled from either the hardware inputs or a network.

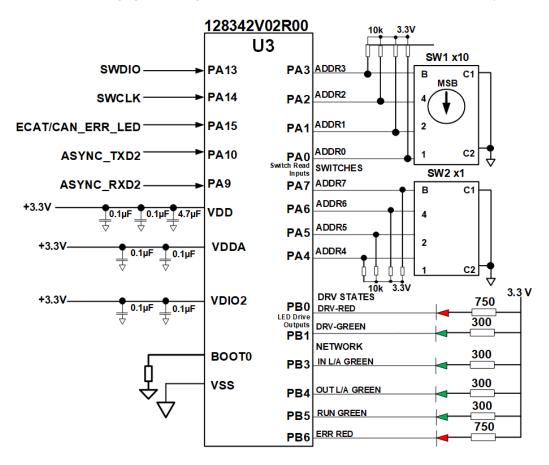

STO-CK-04



WIRING Diagram

In the diagram, the colored lines are as follows:

- Red = (VLOGIC): 2,4,9
- Blue = (SGND): 3,5,8



NPS-D SWITCHES & LEDS

CAN DEVICE ID SWITCH CONNECTIONS & LEDS

The graphic below shows the connections to the CAN Device ID switches and status LEDs. The switches are read after the drive is reset, or powered-On. When changing the settings of the switches, be sure to either reset the drive, or power the drive Off-On.

Device ID Switch Connections & LEDS

Ordering Information: U3

In the above diagram, U3 can be purchased through the Copley approved supplier, Arrow Electronics.

Arrow Electronics

4 Technology Drive, Peabody, MA 01960

Phone: (978) 538-8500

Refer to the table below for more details.

Part Number	Supplier	Description
128342V02R00	Arrow Electronics	Pre-programmed uC for Address Switch and LED

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 24 of 46

copley Nano Module CANopen

NPS-D +HV, VLOGIC, & MOTOR CONNECTIONS

J4 +HV

The +HV power supply connects to J4 pins 2 & 3. The shield shown is optional and is primarily for reduction of RF emissions from the drive. As shown is connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits.

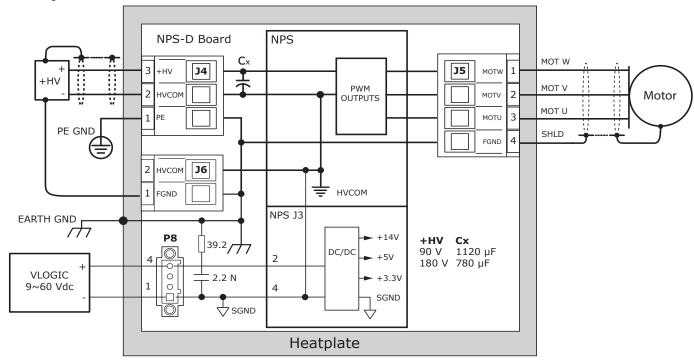
15 MOTOR

Pins $1 \sim 3$ are for the motor windings. Pin 4 is for a cable shield. It connects to the drive heatplate on one end and should connect to the motor frame on the other. This provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to equipment, without the shield connections the PWM shield current could flow into external devices.

P8 VLOGIC

P8 powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with the transformer isolation from the mains and PELV or SELV ratings, and it produces a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

P8 is also the connection point for a motor holding brake. These connect to pins 2 & 3 and is not shown here because it is not part of the power and motor connections.


GROUNDING

PE GND is a Protective Earth Ground which is the zero-volt reference for voltages used in the drive and is also the connection point for fault currents that might flow from any failures in the drive that could expose a user to an electric shock.

FGND, Frame Ground is referenced to the drive heatplate and has no connections to any circuits in the drive. Internal connections from the heatplate to J4, J5, and J6 enable cabling for grounding and shielding.

HVCOM, High-Voltage-Common is the 0V or 'ground' circuit for the high voltage circuits that drive the motor.

SGND, Signal Ground is the 0V circuit for low power control and interface circuits. It is connected to HVCOM internally so that all internal circuits have a common "0V" connection.

J4 +HV

J6 GROUNDS

P8 VLOGIC & BRAKE

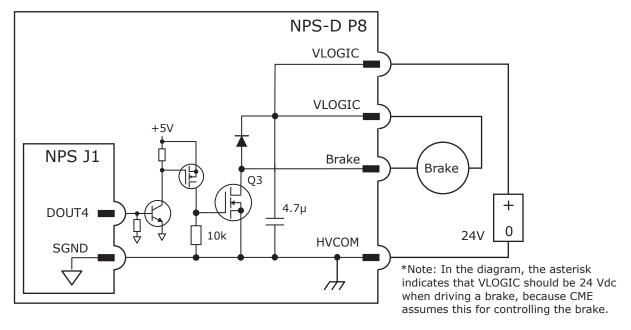
J 5	MC	OTO	R
------------	----	-----	---

Pin	Signal	Pin	Signal	Pin	Signal		Pin	Signal
3	+HV	2	HVCOM	4	VLOGIC input		1	MOTW
2	HVCOM	1	FGND	3	VLOGIC to brake		2	MOTV
1	FGND			2	Brake		3	MOTU
				1	HVCOM		4	FGND

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLOGIC +9~60. 24V power is recommended. 24V required if using 24V BRAKE. If common to +HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 25 of 46



NPS-D VLOGIC & BRAKE

The following diagram shows the brake circuit on the NPS-D board is a MOSFET driven by OUT4 of the NPS.

Specifications

Output	Data	Notes
Voltage Range	Max	+30 Vdc
Output Current	Ids	1.0 Adc

HI/LO Definitions: Outputs

Input	State	Condition
BRAKE	LO	Output MOSFET Q1 is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.
[OUT4]	HI	Output MOSFET Q1 is On. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.

CME Default Setting for Brake Output [OUT4] is "Brake - Active Low."

Active = Brake is holding motor shaft (i.e. the *Brake is Active*).

Motor cannot move.

No current flows in coil of brake.

CME I/O Line States shows [OUT4] as LO.

BRK Output voltage is HI (24V), MOSFET Q1 is Off.

Servo drive output current is zero.

Servo drive is disabled, PWM outputs are Off.

Inactive = Brake is not holding motor shaft (i.e. the *Brake is NOT-Active*).

Motor can move.

Current flows in coil of brake.

CME I/O Line States shows [OUT4] as HI.

BRK output voltage is LO (\sim 0V), MOSFET Q1 is On.

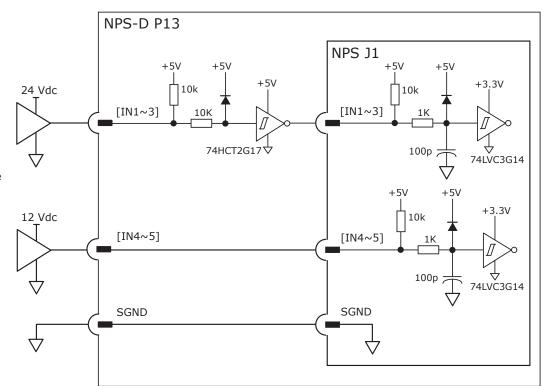
Servo drive is enabled, PWM outputs are On.

Servo drive output current is flowing.

P8 BRAKE

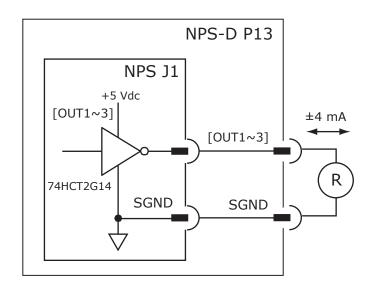
Signal	Pins
Input VLOGIC	4
Brake VLOGIC	3
Brake	2
HVCOM	1

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-121737 Rev 07



NPS-D INPUTS & OUTPUTS

P13 LOGIC INPUTS


Signal	Pins
IN1_24VTOL [IN1]	4
IN2_24VTOL [IN2]	5
IN3_24VTOL [IN3]	6
IN4	7
IN5	10
SGND	15,19

Note: IN1~3 on the NPS-D are 24V compatible.
IN4~5 are 12V tolerant.

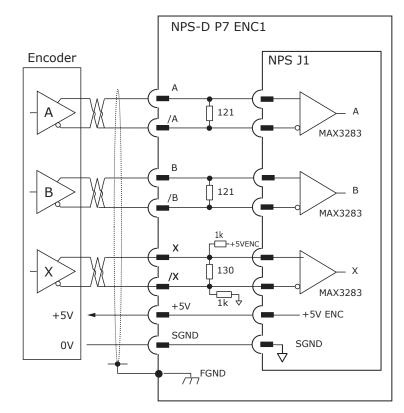
P13 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	16
DOUT2 [OUT2]	17
DOUT3 [OUT3]	18
SGND	15,19

Tel: 781-828-8090

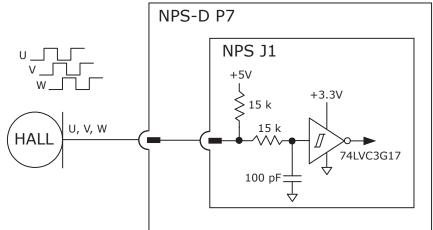
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 27 of 46


NPS-D PRIMARY FEEDBACK ENCODER

P7 ENC1 INPUTS

Signal	Pins
ENCA1_UBC_DAT [A]	14
/ENCA1_UBC_DAT [/A]	13
ENCB1 [B]	12
/ENCB1 [/B]	11
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	10
+5VENC	2,4
SGND	5,15

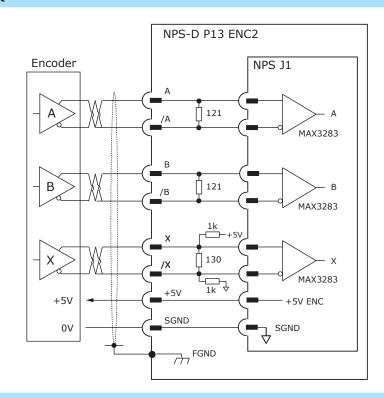

Note: The term, ENC1, is the Motor encoder and should be used in single-encoder applications.

In dual-encoder applications, it can be assigned as Primary or Secondary using CME.

P7 HALL INPUTS

Signal	Pins
HALLU	3
HALLV	6
HALLW	9
SGND	5,15

Tel: 781-828-8090

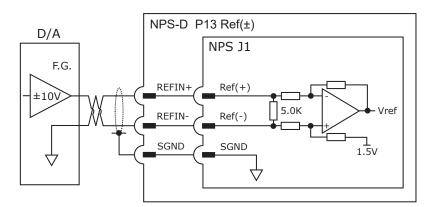


NPS-D SECONDARY FEEDBACK ENCODER

P13 ENC2 INPUTS

Signal	Pins
ENCA2 [A]	26
/ENCA2 [/A]	25
ENCB2 [B]	24
/ENCB2 [/B]	23
ENCX2 [X]	22
/ENCX2 [/X]	21
IN5 [Fault]	10
+5VENC	20
SGND	15,19
FGND	1

Note: ENC2 is the Load encoder. Typically, it is feedback from a load driven by the motor and it is used in dualencoder applications. In dualencoder applications, it can be assigned as Primary or Secondary using CME.


NPS-D ANALOG INPUT: AIN1

As a reference input, it takes Position/Velocity/Torque commands from a controller. If it is not used as a command input, it can be used as general-purpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5 kΩ

Signal	P13 Pins
REFIN+ [Ref(+)]	3
REFIN- [Ref(-)]	2
Sgnd	15, 19

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07


Fax: 781-828-6547 Page 29 of 46

NPS-D DIMENSIONS

*Note: In the above diagram, the asterisk indicates the NPS-D height is the same height with or without the heatsink.

NPS-D Dimensions

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 30 of 46

Tel: 781-828-8090

NPS-D HEATSINK MOUNTING

A thermal pad is used in place of heatsink grease. The pad is die-cut to shape and has holes for the heat sink mounting screws. There are two protective sheets, blue on one side and clear on the other side. Remove both sheets when the interface pad is installed.

- 1. Remove the blue protective sheet from one side of the pad.
- 2. Place the interface pad on the drive, be sure to center the pad holes over the heatplate mounting holes.
- 3. Remove the clear protective sheet from the pad.
- 4. Mount the heatsink onto the drive. Make sure the holes in the heatsink, interface pad, and drive are aligned.
- 5. Torque the #0-80 mounting screws to 1 in-lb, 16 in-oz, 0.113 Nm.

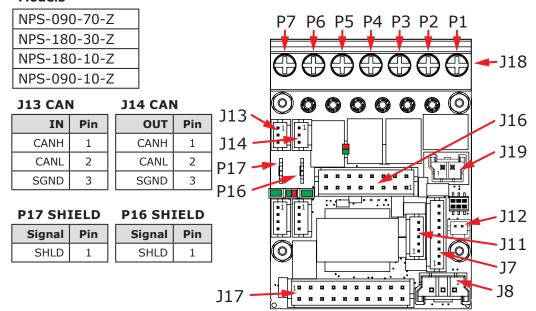
NPS-D Heatsink Mounting Diagram

N-HK Heatsink Kit

Item	Description	Quantity
1	Screw, #0-80, hex, socket cap screw, 1 in [25.4 mm], stainless steel	4
2	Heatsink, 0.728 [18.49] tall, pins	1
3	Thermal pad	1
4	Spacer, hex, 0.125 in [3.18 mm], 0-80 UNC 2B thread, 0.120 in [3.05 mm] tall, AL	4
5	Washer, medium split lock, #0, 18-8, stainless steel	4
6	Nut, #0-80, fine thread, stainless steel	4
7	IFixit Opening Tool	1

Note: The NPS-090-70-D and NPS-180-30-D are shipped from the factory with the Heatsink included.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 31 of 46



NPS-Z BOARD

The NPS-Z Signals and Pins diagram and the tables identify the jumpers, signals and pins on the NPS-Z board.

Models

NPS-Z Signals and Pins Diagram

J18

PIN	Signal
1	PE
2	HVCOM
3	+HV
4	MOTW
5	MOTV
6	MOTU
7	FGND

J19 VLOGIC

Signal	Pin
HVCOM	1
VLOGIC	2

J12 BRAKE

Signal	Pin
VLOGIC	2
BRAKE	1

J17 I/O

Signal	PIN		Signal
/ENCA2	2	1	REFIN1-
ENCA2	4	3	REFIN1+
IN1_24VTOL	6	5	/ENCX2
IN2_24VTOL	8	7	ENCX2
IN3_24V_TOL	10	9	+5VENC
DOUT1	12	11	SGND
DOUT2	14	13	/ENCB2
DOUT3	16	15	ENCB2
IN4	18	17	SGND
IN5	20	19	FGND

J16 STO

Signal	PIN		Signal
STO1_24V_IN	2	1	STO1_RTN
STO1_IN	4	3	STO1_RTN
n.c.	6	5	n.c.
STO2_24V_IN	8	7	STO2_RTN
STO2_IN	10	9	STO2_RTN
n.c.	12	11	n.c.
STO_STATUS_ OUTPUT_RTN	14	13	SGND
+5V	16	15	STO_STATUS_ OUTPUT

J11 HALLS

Signal	Pin
HALLU	5
HALLV	4
HALLW	3
+5VENC	2
SGND	1

J7 ENCODER 1

Signal	Pin
OVERTEMP_IN	9
ENCX1_UBC_CLK	8
/ENCX1_UBC_CLK	7
ENCB1	6
/ENCB1	5
ENCA1_UBC_DAT	4
/ENCA1_UBC_DAT	3
+5VENC	2
SGND	1

J8 RS-232

J6 K5-232						
Signal	Pin					
RX232TX1	3					
RS232RX1	2					
SGND	1					

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 32 of 46

NPS-Z: RS-232

RS-232 CONNECTION

The RS-232 port is used to configure the drive for standalone applications, or it is used for configuration before it is installed into a CAN network.

CME software communicates with the drive over this link and is then used for a complete drive setup.

The CAN Device ID is set via RS-232 along with other operating functions.

J8 RS-232

JO 110 LD				
Signal	Pin			
RX232TX1	3			
RS232RX1	2			
SGND	1			

NPS-Z J8

NPS J1

30

TxD

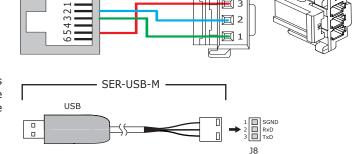
TD

RS-232

RXD

RD

39 SGND


NPS-Z J8

Drive

Compatibility with existing serial-data cables can be done with an RJ-11 socket (6P6C) wired as shown in the NPS-Z J8-RJ-11 diagram.

Molex: 42410-6170 Modular Jack, 6 terminals, size 6

Copley will soon offer a SER-USB-M serial port adapter. This serial port is a full-duplex, three-wire (RxD, TxD, SGND) type that operates from 9,600 to 230,400. The SER-USB-M cable has output levels that are compatible with NPS-Z serial port.

NPS-Z: AMP STATUS LED

DRIVE STATUS LED (AMP)

A bi-color LED gives the state of the drive. Colors do not alternate, and can be solid ON or blinking. If multiple conditions occur, only the top-most condition will be displayed. When that condition is cleared, the next condition in the table will be shown.

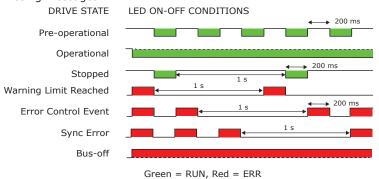
RJ-11

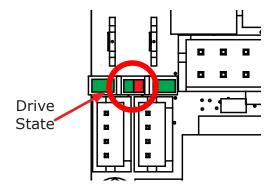
6P6C

LED	Condition Description			
RED/BLINKING	Latching fault. Operation can not resume until the drive is Reset.			
RED/SOLID	Transient fault condition. Drive can resume the operation when the condition causing the fault is removed.			
GREEN/SLOW-BLINKING	Drive OK but NOT-enabled. Can run when enabled.			
GREEN/FAST-BLINKING	Positive or Negative limit switch active. Drive can only move in the direction not inhibited by limit switch.			
GREEN/SOLID	Drive OK and enabled. Can run in response to reference inputs or CAN commands.			

LATCHING FAULTS

Default	Optional (Programmable)
Short circuit (Internal or External)	Over-voltage
Drive over-temperature	Under-voltage
Motor over-temperature	Motor Phasing Error
Feedback Error	Command Input Lost
Following Error	Motor Wiring Disconnected
STO Active	Over Current (latched)


Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 33 of 46

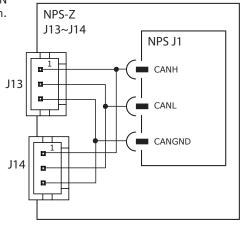


NPS-Z: CAN STATUS LED

In the diagrams, the Green LED, "RUN" shows the state of the CAN state machine. The Red LED, "ERR" shows the status of the CAN physical layer and errors due to missing messages.

NPS-Z: J13-J14 CAN

CAN CONNECTORS

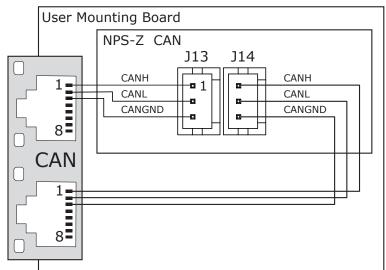

Dual connectors are provided for CAN bus connectivity. Pins are wired-through so that drives can be daisy-chained and controlled with a single connection to the user's CAN interface. A 120 ohm CAN terminator should be placed in the last drive in the chain.

J13-J14 CAN CONNECTORS

		R.I

J14 CAN

Signal	Pin	Signal	Pin
CANH	1	CANH	1
CANL	2	CANL	2
SGND	3	SGND	3


CAN CABLE CONNECTORS

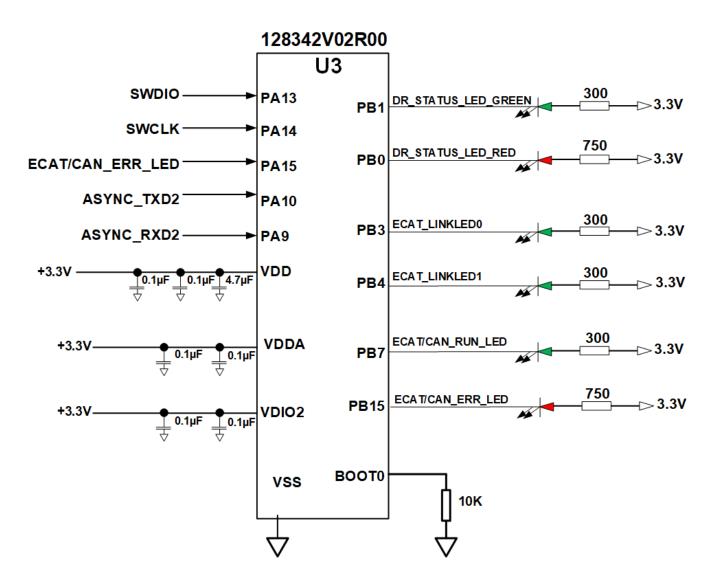
The Dual RJ-45 connectors that accept standard Ethernet CAT-5 cables are provided for CANopen connectivity.

RJ-45 CAN

Pin	Signal
1	CANH
2	CANL
3	CANGND
4	*
5	*
6	*
7	*
8	*

*Note: In the Signal column, the asterisk next to the pins indicates the pins are pass-through and have no connections to the drive circuits.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 P/N 16-121737 Rev 07



NPS-Z: DRIVE AND NETWORK STATUS LEDS

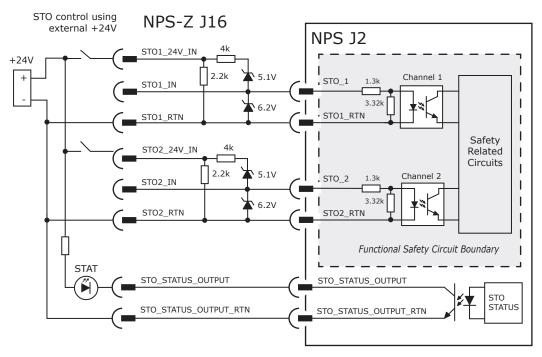
The "STM" chip uses the serial data from ASYNC_TXD2 to drive LEDs. DR_STATUS_LED_X signals drive the AMP STATUS LED (detail on page 2). CAN_XXX_LED show the network status of the drive communication.

NPS-Z Drive and Network Status LEDs

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 35 of 46

Tel: 781-828-8090



NPS-Z: J16 SAFE TORQUE OFF [STO]

DESCRIPTION

In the diagram, it shows the use of external 24V to energize the STO inputs. Both STO inputs must be energized in order to enable the drive.

Note: In the diagram, it shows the +24V can be driven from the VLOGIC power supply. The STOx_24V_IN circuits can tolerate the +60V limit of the VLOGIC input. The STOx_IN maximum voltage limit is +7.0 Vdc.

NPS-Z J16 Diagram

STO_STATUS_OUTPUT

STO1	0	1	0	1
STO2	0	0	1	1
STAT	0	0	0	1

Note: In the STO Status Output table, STO1 & STO2 rows, the values are below.

- 1 = 24V are applied between the IN-24V and RTN.
- 0 = open-circuit.

In the STAT row, the following are the values.

- 1 =the optocoupler is On.
- 0 = the optocoupler is Off.
- STAT output is On (True) when both STO1 & STO2 are energized, allowing the drive to be enabled and to produce torque.

J16 STO

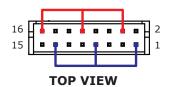
Signal	Pin		Signal
STO1_RTN	1	2	STO1_24V_IN
STO1_RTN	3	4	STO1_IN
N.C.	5	6	N.C.
STO2_RTN	7	8	STO2_24V_IN
STO2_RTN	9	10	STO2_IN
N.C.	11	12	N.C.
SGND	13	14	STO_STATUS_OUTPUT_RTN
STO_STATUS_OUTPUT	15	16	+5VENC

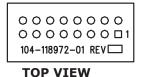
STO OPERATION

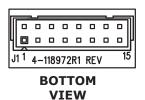
OTO OT ENGRIPOR		
STO Input Voltage	STO State	
STO1_24V_IN AND STO2-IN-24V ≥ 16 Vdc STO1_IN AND STO2_IN ≥ 3.0 Vdc	STO Inactive. Drive can be enabled to produce torque	
STO1-IN-24V OR STO2-IN-24V < 16 Vdc STO1_IN OR STO2_IN ≤ 2.0 Vdc STO1-IN OR STO2-IN Open	STO Active. Drive cannot be enabled to produce torque	

Note: Voltages in the above table referenced between an STOx-IN and an STOx-RTN in J16. E.g. V(STO1-IN) = V(STO1-24V-IN1) - V(STO1-RTN)

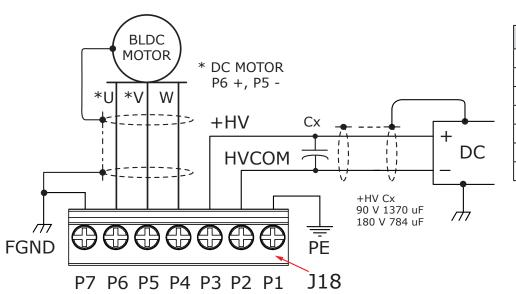
Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 36 of 46






NPS-Z: J16 SAFE TORQUE OFF [STO] BYPASS

Bypassing is for users who do not use the STO function. The NS-Z-STO has jumpers that use the VLOGIC to energize the STO inputs. This disables the STO function, allowing the drive to be enabled from hardware inputs or a network. The graphic shows the wiring of the NS-Z-STO


NPS-Z: BOARD J18 +HV & MOTOR CONNECTIONS

J18 +HV: P2, P3

The +HV power supply connects to J18 pins P2 and P3. The shield shown in the diagram is optional and is primarily used for reduction of RF emissions from the drive. As shown, it connects to the case of the power supply. Note that the minus terminal is not grounded externally. This is because currents in the cables produce voltage drops. Grounding the supply at the drive ensures that such voltage drops do not appear in the drive circuits. Bulk capacitance Cx is required from +HV to HVCOM as shown. Cx must be adjachent to the EZ-OEM.

J18 MOTOR: P4~P7

Use Pins P4~P6 for the motor windings. Pin P7 is used for the cable shield. It connects to FGND on one end and should connect to the motor frame on the other end. This provides a return path for currents produced by the PWM outputs and the capacitance between the cable conductors, motor windings, and motor frame. While the frame is commonly grounded by mounting to the equipment, without the shield connections, the PWM shield current could flow into external devices.

J18				
Pin	Signal			
P1	PE			
P2	HVCOM			
Р3	+HV			
P4	MOTW			
Р5	MOTV			
P6	MOTU			
P7	FGND			

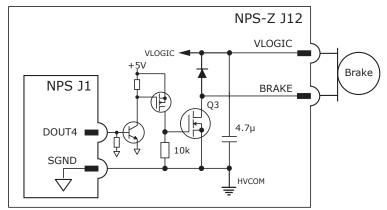
 $^{f st}$ Note: In the diagram, the asterisk indicates the DC brush motors connect to P6 & P5.

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLOGIC +9~60. 24V power is recommended. 24V required if using 24V BRAKE. If common to HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 37 of 46

NPS-Z: J12 BRAKE


J12 BRAKE:

The EZ board has components that can actuate a brake when controlled by DOUT4. If it is not used for the brake, DOUT4 is programmable for other functions.

HI/LO Definitions: Outputs

Input	State	Condition		
BRAKE	LO	Output MOSFET Q1 is OFF. Brake is un-powered and locks motor. Motor cannot move. Brake state is Active.		
[DOUT4]	HI	Output MOSFET Q1 is ON. Brake is powered, releasing motor. Motor is free to move. Brake state is NOT-Active.		

Use the CME software to set the custom brake configuration. This configuration has settings for VLOGIC, Initial Voltage, Time at Initial Voltage, Holding Voltage, and PWM Period.

CME Default Setting for Brake Output [OUT4] is "Brake - Active Low."

Active = Brake is holding motor shaft (i.e. the *Brake is Active*).

Motor cannot move.

No current flows in coil of brake.

CME I/O Line States shows [OUT4] as LO.

BRK Output voltage is HI (24V), MOSFET Q1 is OFF.

Servo drive output current is zero.

Servo drive is disabled, PWM outputs are Off.

Inactive = Brake is not holding motor shaft (i.e. the Brake is NOT-Active).

Motor can move.

Current flows in coil of brake.

CME I/O Line States shows [OUT4] as HI.

BRK output voltage is LO (~0V), MOSFET Q1 is On.

Servo drive is enabled, PWM outputs are On.

Servo drive output current is flowing.

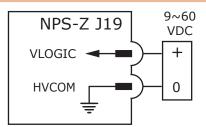
J12 BRAKE

Pin	Signal
2	VLOGIC
1	BRAKE

Specifications

Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Output Current	Ids	1.0 Adc

NPS-Z: J19 VLOGIC


J19 VLOGIC:

Powers the internal logic and control circuits in the drive. When the STO feature is used, it must be produced by power supplies with transformer isolation from the mains, PELV or SELV ratings, and produce a maximum output voltage of 60 Vdc. If the motor can operate from voltages of 60 Vdc or less, the +HV and VLOGIC can be driven from a single power supply.

Specifications

Input	Data	Notes
Voltage Range	Max	+6~60 Vdc
Input Dower	Тур	4 W
Input Power	Max	8 W

Note: Typical input power is no load on encoder +5V. Maximum input power is with two encoders @ 250 mA each, and +5V at maximum.

J19 VLOGIC

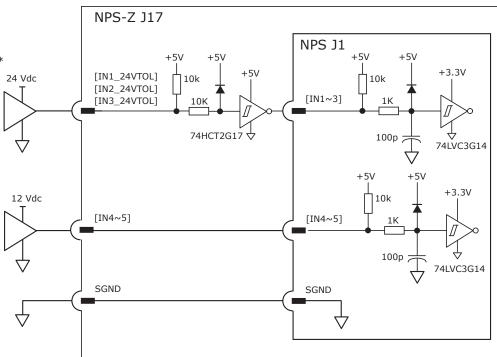
Pin	Signal	
2	VLOGIC	
1	HVCOM	

Refer to the AN136 Accelnet External Regen Application Note, Part Number 16-125661.

VLOGIC +9~60. 24V power is recommended. 24V required if using 24V BRAKE. If common to +HV do not exceed 60V, use REGEN protection, and diode isolation from HV.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07

NPS-Z: J17 INPUTS & OUTPUTS

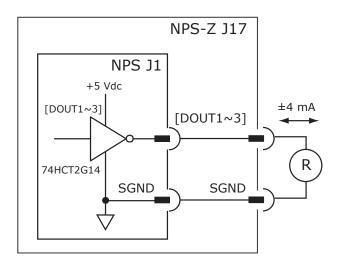

J17 has the following connections:

- Digital inputs 1~5
- Digital outputs 1~3
- Analog differential input *
- Secondary Quad A/B/X encoder input *
- * See page 39

Note: IN1 \sim 3 are 24V compatible. IN4 \sim 5 are 12V tolerant.

J17 LOGIC INPUTS

Signal	Pins
IN1_24VTOL	6
IN2_24VTOL	8
IN3_24VTOL	10
IN4	18
IN5	20
SGND	11,17



J17 LOGIC OUTPUTS

Signal	Pins
DOUT1 [OUT1]	12
DOUT2 [OUT2]	14
DOUT3 [OUT3]	16
SGND	11,17

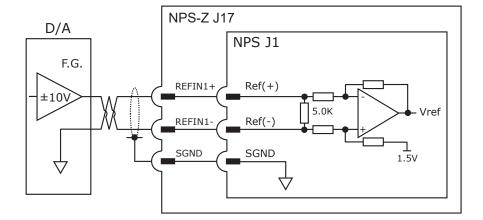
J17 I/O

Signal	Pi	ns	Signal
/ENCA2	2	1	REFIN-
ENCA2	4	3	REFIN+
IN1_24VTOL	6	5	/ENCX2
IN2_24VTOL	8	7	ENCX2
IN3_24VTOL	10	9	+5VENC
DOUT1	12	11	SGND
DOUT2	14	13	/ENCB2
DOUT3	16	15	ENCB2
IN4	18	17	SGND
IN5	20	19	FGND

Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 39 of 46

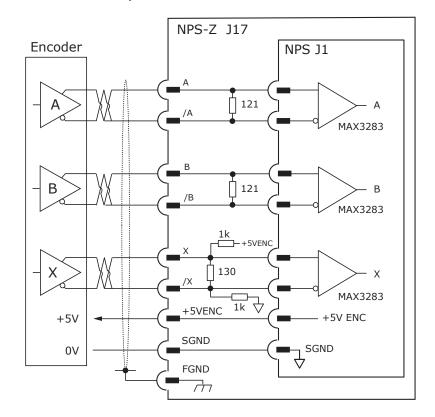

NPS-Z: J17 ANALOG INPUT

As a reference input, it takes Position/Velocity/Torque commands from a controller. If it is not used as a command input, it can be used as general-purpose analog input.

SPECIFICATIONS

Specifications	Data	Notes
Input Voltage	Vref	±10 Vdc
Input Resistance	Rin	5.0 kΩ

Name	P1 Pins
Ref(+)	3
Ref(-)	1



NPS-Z: J17 SECONDARY ENCODER

The secondary encoder is used when the load is not connected directly to the motor.

J17 ENC2 INPUTS

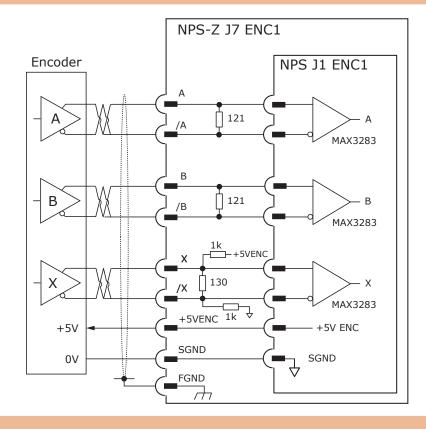
Signal	Pins
ENCA2 [A]	4
/ENCA2 [/A]	2
ENCB2 [B]	15
/ENCB2 [/B]	13
ENCX2 [X]	7
/ENCX2 [/X]	5
+5VENC	9
SGND	11,17
FGND	19

Tel: 781-828-8090

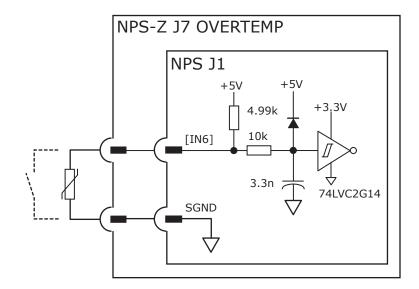
Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 40 of 46

copley Nano Module CANopen



NPS-Z: J7 PRIMARY ENCODER


J7 ENC1 INPUTS

Signal	Pins
ENCA1_UBC_DAT [A]	4
/ENCA1_UBC_DAT [/A]	3
ENCB1 [B]	6
/ENCB1 [/B]	5
ENCX1_UBC_CLK [X]	8
/ENCX1_UBC_CLK [/X]	7
OVERTEMP_IN [IN6]	9
+5VENC	2
SGND	1

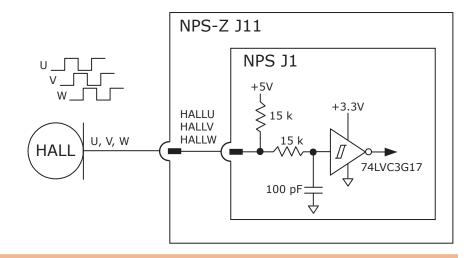
NPS-Z: J7 OVERTEMP

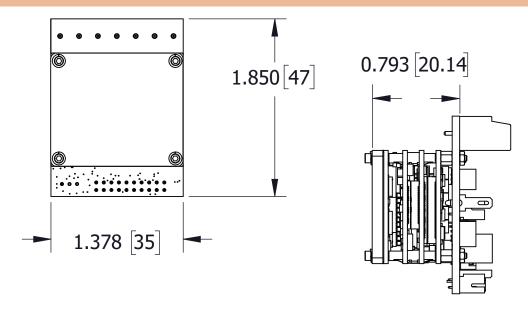
Input IN6 has a 49 microsecond rise time RC filter with a 4.99 $k\Omega$ pullup resistor to +5 VDC. Input IN6 is designed to interface with an industry standard PTC thermistor IAW BS 49990111(1987) that is used for the built-in thermal protection of the motor as a default. If it is not used for the Motemp function, IN6 can be re-programmed for other input functions.

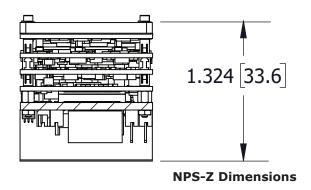
Tel: 781-828-8090

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Fax: 781-828-6547 Page 41 of 46




NPS-Z: J11 HALLS

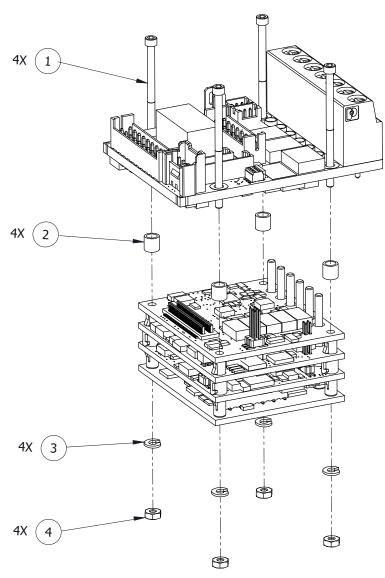

J11 HALL INPUTS

Signal	Pins
Hall U	5
Hall V	4
Hall W	3
+5VENC	2
SGND	1

NPS-Z: MECHANICALS

Copley Controls, 20 Dan Road, Canton, MA 02021, USA P/N 16-121737 Rev 07

Tel: 781-828-8090 Fax: 781-828-6547 Page 42 of 46



NPS-Z: MECHANICALS

In the NPS-Z Components diagram, it shows the location of the parts in the drive when it is shipped. Use the screw lengths of $1^{\prime\prime}$ [25.4 mm] to allow the nuts and washers to secure the parts together.

When the user secures the nuts to the underside of the board to mount the board to the panel, add the nuts' (depth or width) to this number to calculate the minimum length of screws required. For a panel with tapped holes, the 1"[25.4 mm] screw should be sufficient.

NPS-Z Components Diagram

Item	Qty	Description	Mfgr, Part Number
1	4	Screw, 1", hex, 0-80, 18-8 THD, 80-1 SS	Fastenal: 0171020
2	4	Spacer, 3 mm, 0.090" I.D, 0.125" O.D.	Bivar: 937-3MM
3	4	Washer, split, 0.062 ID, 18-8, 0.137" O.D. SS	Fastenal: 017926
4	4	Nut, 0-80, 1/8", hex, socket, cap 18-8 SS	Fastenal: 0173909

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 43 of 46

Copley Nano Module CANopen

ORDERING GUIDE

NANO

Part Number	Description
NPS-090-10	Nano Micro Module CAN NPS servo drive, 5/10 A, 90 Vdc
NPS-090-70	Nano Micro Module CAN NPS servo drive, 35/70 A, 90 Vdc
NPS-180-10	Nano Micro Module CAN NPS servo drive, 5/10 A, 180 Vdc
NPS-180-30	Nano Micro Module CAN NPS servo drive, 15/30 A, 180 Vdc
NPS-090-10-D	Nano Micro Module CAN NPS with DEV board, not soldered, no heat sink
NPS-090-70-D	Nano Micro Module CAN NPS with DEV board, soldered , with heat sink
NPS-180-10-D	Nano Micro Module CAN NPS with DEV board, not soldered, no heat sink
NPS-180-30-D	Nano Micro Module CAN NPS with DEV board, not soldered, with heat sink
NPS-090-10-Z	Nano Micro Module CAN NPS with EZ board, not soldered, no heat sink
NPS-090-70-Z	Nano Micro Module CAN NPS with EZ board, soldered , no heat sink
NPS-180-10-Z	Nano Micro Module CAN NPS with EZ board, not soldered, no heat sink
NPS-180-30-Z	Nano Micro Module CAN NPS with EZ board, not soldered, no heat sink

ACCESSORIES FOR NES

Part Number	Description
N-HK	Heatsink Kit

ACCESSORIES FOR NPS-D

Part Number	Description			
NS-D-CK	NPS-D Connector Kit			
STO-CK-04	NPS-D Bypass Jumper			
N-HK	Heat Sink Kit			
SER-USB-RJ11	USB to 6-pin modular adapter			
CAN-USB-01	Single Channel CAN-USB Interface			
N-DEV-NK	CANopen Network Kit			

CONNECTOR KIT FOR NPS-D

Model	Qty	Ref	Name	Description	MFGR Part Number
	1	P8	VLOGIC and Brake	Connector, terminal-block, 4-pole, 3.5 mm	Wago: 734-104/107-000
	1	PO		Tool, for P8	Wago: 734-231
	2	P7,P9	I/O	Connector Cover, D-Sub, 9-pin	3M: 3357-9209
NS-D-CK	1	P9	Safety	Connector, D-Sub, 9-position, size 1	TE: 205204-4
Connector Kit	9	P9	Safety	Contact, pin, crimp, snap-in, 24~20 AWG	TE: 66506-9
	1	P7	I/O	Connector Cover, D-Sub, 15-pin	3M: 3357-9215
	1	P7	Feedback	Connector, D-Sub, 15-pin (HD), male, solder cup	Norcomp: 180-015-103L001
	1	P13	I/O	Connector, D-sub, 26-pin (HD), male, solder cup	Norcomp: 180-026-103L001
N-DEV-NK				CANopen Network Kit	

Trademarks: CANopen® is a registered trademark of CAN in Automation, EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 44 of 46

ORDERING GUIDE

ACCESSORIES FOR NANO MICRO MODULE NPS-Z

Part Number	Description
NS-Z-CK	NPS-Z Connector Kit
N-HK	Heat Sink Kit
SER-USB-M	USB to 3-Pin Molex adapter cable

CONNECTOR KIT FOR NPS-Z

Model	Qty	Ref	Name	Description	MFGR Part Number
	1	J12	Brake	CONN WIRE-MT HSG SKT 1X2P 1.25MM LKG NYL BEIGE	Hirose DF13-2S-1.25C
	2	J13, J14	CAN	CONN WIRE-MT HSG SKT 1X3P 1.25MM LKG NYL BEIGE	Hirose DF13-3S-1.25C
	2	J9, J10	CANopen	CONN WIRE-MT HSG SKT 1X4P 1.25MM LKG NYL BEIGE	Hirose DF13-4S-1.25C
	1	J11	Halls	CONN WIRE-MT HSG SKT 1X5P 1.25MM LKG NYL BEIGE	Hirose DF13-5S-1.25C
	1	37	ENC1, Motemp	CONN WIRE-MT HSG SKT 1X9P 1.25MM LKG NYL BEIGE	Hirose DF13-9S-1.25C
	24	J7,J9,J10 J11,J12 J13,J14		CONN CONTC SKT CRMP 30-26GA 1MM MAX INSUL DIA AU	Hirose DF13-2630SCFA
	1	J16	STO	CONN WIRE-MT HSG RCPT 2X8P 2X2MM LKG NYL BLK	Hirose DF11-16DS-2C
	1	J17	IN1~5, DOUT1~3, ENC2, AREF	CONN WIRE-MT HSG RCPT 2X10P 2X2MM LKG NYL BLK MATING 129846	Hirose DF11-20DS-2C
	36			CONN CONTC SKT CRMP 28-24GA 1.45MM MAX INSUL DIA AU	Hirose DF11-2428SCFA(04)
	1	J19	Vlogic	CONN WIRE-MT HSG RCPT 1X2P 2MM LKG POLYEST NAT	Molex 35507-0200
	1	J8	RS-232	CONN WIRE-MT HSG RCPT 1X3P 2MM LKG POLYEST NAT	Molex 35507-0300
NS-Z-CK Connector	2	P16, P17	Cable Shields	FASTON RCPT .11125W .02THK 26-22GA POSTIVE LOCK	TE 353249-2
Kit	3		DF13 Wires	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Digi-Key H4BBG-10112-B6-ND
	19		DF13 Prewire	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Digi-Key H4BBG-10112-W6-ND
	20		DR11 Wires	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD WHT AU 12IN	Digi-Key H3BBG-10112-W6-ND
	3		DF11 GP	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Digi-Key H3BBG-10112-R6-ND
	3		DF13 Wire	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD RED AU 12IN	Digi-Key H4BBG-10112-R6-ND
	1		P6, HVCOM	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD BLK SN 12IN	Digi-Key 0502128000-12-B4
	1		J19, +VLOGIC	CBL ASSY SKT CONTC TO FREE END 1COND 24GA 7STRD RED SN 12IN	Digi-Key 0502128000-12-R4
	3		DF11	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLK AU 12IN	Digi-Key H3BBG-10112-B6-ND
	1		Brake Wire	CBL ASSY SKT CONTC TO SKT CONTC 1COND 26GA 7STRD BLU AU 12IN	Digi-Key H4BBG-10112-L6-ND
	1	J16	STO Bypass PCB	BD ASSY, STO BYPASS BOARD	Copley: NS-Z-STO

Note: Specifications subject to change without notice.

Trademarks: CANopen® is a registered trademark of CAN in Automation, EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 45 of 46

ORDERING GUIDE

16-121737 Document Revision History

Revision	Date	Remarks
00	November 12, 2019	Initial released version
01	November 22, 2019	NPS-090-10 added
02	December 6, 2019	Deleted EtherCAT references, updated accessories, corrections to diagram on page 15.
03	May 20, 2020	Added thermals, added -D models to table above.
04	February 22, 2021	Deleted NPS-090-10 model, NPS-D only
AA	April 7, 2021	Pre-production revision - Changed revision to pre-production naming convention. Updated signal names to follow NPS-D and added connector kit for NPS-D.
AB	November 1, 2021	Pre-production revision - Changed revision to pre-production naming convention. Added -Z board
05	June 22, 2022	Production revision Updated with 24V recommendations for VLOGIC, updated with 3.3V input, updated with capacitor on +HV input
06	August 8, 2022	Corrected pages 6 and 13 to match STO pinouts on page 14.
07	October 13, 2023	Updated text & graphics to change P1 to J1 (where applicable) and updated Accessories section. Added STO Warning on pages 6 & 14 and added U3 information on pages 24 & 35.

Copley Controls, 20 Dan Road, Canton, MA 02021, USA Tel: 781-828-8090 Fax: 781-828-6547 P/N 16-121737 Rev 07 Page 46 of 46